|
DOE - Fossil Energy Techline - Issued on: October 9, 2007 DOE Awards First Three Large-Scale Carbon Sequestration ProjectsU.S. Projects Total $318 Million and Further President Bush's Initiatives to Advance Clean Energy Technologies to Confront Climate ChangeWashington, DC - In a major step forward for demonstrating the promise of clean energy technology, U.S Deputy Secretary of Energy Clay Sell today announced that the Department of Energy (DOE) awarded the first three large-scale carbon sequestration projects in the United States and the largest single set in the world to date. The three projects - Plains Carbon Dioxide Reduction Partnership; Southeast Regional Carbon Sequestration Partnership; and Southwest Regional Partnership for Carbon Sequestration - will conduct large volume tests for the storage of one million or more tons of carbon dioxide (CO2) in deep saline reservoirs. DOE plans to invest $197 million over ten years, subject to annual appropriations from Congress, for the projects, whose estimated value including partnership cost share is $318 million. These projects are the first of several sequestration demonstration projects planned through DOE's Regional Carbon Sequestration Partnerships.
"Successful demonstration of large volume carbon capture and storage technology plays a key role in achieving President Bush's goals for a cleaner energy future," Deputy Secretary of Energy Clay Sell said. "Coal is vitally important to America's energy security and this technology will help enable our Nation, and future generations, to use this abundant resource more efficiently and without emitting greenhouse gas emissions." The projects include participation from 27 states and the Canadian provinces of Alberta, Saskatchewan, and Manitoba. They will demonstrate the entire CO2 injection process - pre-injection characterization, injection process monitoring, and post-injection monitoring - at large volumes to determine the ability of different geologic settings to permanently store CO2. The projects awarded today are as follows:
Over the first 12 to 24 months of these projects, researchers and industry partners will characterize the injection sites and then complete the modeling, monitoring, and infrastructure improvements needed before CO2 can be injected. These efforts will establish a baseline for future monitoring after CO2 injection begins. Each project will then inject a large volume of CO2 into a regionally significant storage formation. After injection, researchers will monitor and model the CO2 to determine the effectiveness of the storage reservoir. These three projects will double the number of large-volume carbon storage demonstrations in operation worldwide. Current projects include the Weyburn Project in Canada, which uses CO2 captured during coal gasification in North Dakota for enhanced oil recovery; Norway's Sleipner Project, which stores CO2 in a saline formation under the North Sea; and the In Salah Project in Algeria, which stores CO2 in a natural gas field. The successful demonstration of carbon storage in these U.S. geologic basins by the Regional Partnerships will play a crucial role in future infrastructure development and sequestration technology to mitigate CO2 emissions. The newly awarded projects kick off the third phase of the Regional Carbon Sequestration Partnerships program. This initiative, launched by DOE in 2003, forms the centerpiece of national efforts to develop the infrastructure and knowledge base needed to place carbon sequestration technologies on the path to commercialization. During the first phase of the program, seven partnerships - consisting of organizations from government, industry and academia, and extending across the United States and into Canada - characterized the potential for CO2 storage in deep oil-, gas-, coal-, and saline-bearing formations. When Phase I ended in 2005, the partnerships had identified more than 3,000 billion metric tons of potential storage capacity in promising sinks. This has the potential to represent more than 1,000 years of storage capacity from point sources in North America. In the program's second phase, the partnerships implemented a portfolio of small-scale geologic and terrestrial sequestration projects. The purpose of these tests was to validate that different geologic formations have the injectivity, containment, and storage effectiveness needed for long-term sequestration. - End of Techline
|