About DOE Button Organization Button News Button Contact Us Button
Search  
US Department of Energy Seal and Header Photo
Science and Technology Button Energy Sources Button Energy Efficiency Button The Environment Button Prices and Trends Button National Security Button Safety and Health Button
_DOE Office of Fossil Energy Web Site
You are here: 

Techlines provide updates of specific interest to the fossil fuel community. Some Techlines may be issued by the Department of Energy Office of Public Affairs as agency news announcements.
 
 
Issued on:  June 21, 2007

DOE-Funded Innovation Promotes Reduced Coal Plant Emissions


Novel Catalyst System Bolsters NOx Control

Washington, DC - A catalyst-activity testing tool developed with funding from the U.S. Department of Energy is now commercially available and offers a major breakthrough in managing the selective catalytic reduction systems that are used in power plants to control nitrogen oxides (NOx) emissions. The much-needed innovation will promote both cleaner air and cost savings for electric customers by helping plant operators to more cost-effectively comply with NOx emissions regulations, including the new Clean Air Interstate Rule.

Most of America's energy systems rely on combustion processes. A drawback of combustion is the formation of NOx - a group of highly reactive gases that form when fuel is burned at high temperatures and which contribute to smog, acid rain, and global warming. Selective catalytic reduction (SCR) systems control NOx emissions by injecting ammonia or urea into flue gas in the presence of a catalyst, converting NOx into nitrogen and water.

Over time, the ability of the SCR catalyst to convert NOx degrades, and the catalyst surface can also become clogged with fly ash. Additionally, SCR systems contain multiple catalyst layers, and each layer's activity can decay at different rates, requiring layer-specific maintenance. To restore SCR performance, power plant maintenance staff can either replace a layer of used catalyst with fresh catalyst, add an additional layer of fresh catalyst, or do both.

Detecting catalyst deactivation is key for predicting remaining catalyst life, and the timing of maintenance is critical for catalyst management. Replacing catalyst too soon means not getting the full life out of the catalyst and results in higher operating costs. Replacing it too late compromises NOx reduction, which may lead to reducing plant output or purchasing costly emissions credits to avoid penalties for non-compliance with NOx regulations.

The new Knoxcheck Online Catalyst Activity Test System, which was developed by Fossil Energy Research Corporation (FERCo) of Laguna Hills, Calif., monitors catalyst activity in an SCR system without the need to shut down the unit to obtain catalyst samples. When tested on a full-scale operating SCR reactor at Southern Company's Plant Gorgas Unit 10, the new system produced results similar to those obtained from traditional laboratory testing of catalyst activity. Linked with EPRI's CatReact(TM) catalyst management software, the Knoxcheck technology helped Southern Company make proactive decisions about the operation and maintenance of the SCR system and for overall NOx compliance on the unit.  

Prior to the development of the Knoxcheck system, the traditional way to analyze catalyst activity was to physically enter the SCR system during a generating unit outage and remove a sample of catalyst from each layer of the SCR, then take it to a laboratory for analysis. To comply with implementation of the Clean Air Interstate Rule, which requires deep reductions in NOx emissions in Eastern states by 2009, plant operators are moving toward year-round operation of their SCR systems. This will mean fewer and less convenient opportunities for shut-down, removal of catalyst samples, and catalyst maintenance.  

According to Charles Miller, a project manager at DOE?s Office of Fossil Energy National Energy Technology Laboratory, the new system is comparable to non-invasive diagnostic tools in other areas. "Just like X-rays, sonograms, and other diagnostic medical techniques that don't require surgery on the body, the Knoxcheck system monitors the health of each SCR catalyst layer without taking the SCR system out of service," Miller said. "Technicians can measure catalyst activity during any unit load condition without disruption, allowing the power plant and its environmental controls to continue operating with minimum downtime." 

Using the in situ system in conjunction with catalyst management software allows power plant owners to optimize planning, which could save millions of dollars by minimizing costs for NOx-related outages, load reductions, and other items required for NOx compliance. For example, avoiding a 5-day unit outage for SCR work, and the corresponding need to purchase replacement power at $20 per megawatt-hour during that outage, could save up to $1.2 million on a 500 megawatt unit. 

As another example, if SCR NOx control performance on the same 500 megawatt unit decreased from a required 90 percent removal to 85 percent, purchasing emissions credits (at $2,500 per ton of NOx) to maintain NOx compliance could cost the power plant around $300,000 for the May-September ozone season, or about $720,000 for the year. These costs could be minimized by using information obtained with the Knoxcheck system.

The commercially offered Knoxcheck system - which received funding from Southern Company and the Electric Power Research Institute (EPRI), in addition to the Energy Department - will also allow remote monitoring and calibration of its equipment over the Internet.

- End of Techline

For more information, contact:

  • Mike Jacobs, FE Office of Communications, 202-586-0507

Program Links

>

DOE's CO2 Capture and H2O Management Innovations Program


 

 

>

 Page owner:  Fossil Energy Office of Communications
Page updated on: June 21, 2007 

The White House USA.gov E-gov IQ FOIA Privacy Program
U.S. Department of Energy | 1000 Independence Ave., SW | Washington, DC 20585
1-800-dial-DOE | f/202-586-4403 | e/General Contact

Web Policies | No Fear Act | Privacy | Phone Book | Accessibility