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• 11,159 MW of wind power capacity (worth between €13 bn and €18 bn) was 
installed in the EU-28 during 2013, a decrease of 8% compared to 2012 
installations.

• EU wind power installations for 2013 show the negative impact of market, 
regulatory and political uncertainty sweeping across Europe. Destabilised legis-
lative frameworks for wind energy are undermining investments. 

• Wind power is the technology which installed the most in 2013: 32% of total 
2013 power capacity installations - five percentage points higher than during 
the previous year.

• Renewable power installations accounted for 72% of new installations during 
2013: 25 GW of a total 35 GW of new power capacity, up from 70% the 
previous year.

 •There are now 117.3 GW of installed wind energy capacity in the EU: 110.7 
GW onshore and 6.6 GW offshore.

• The EU’s total installed power capacity increased by 13 GW net to 900 GW, 
with wind power increasing by 11.2 GW and reaching a share of total installed 
generation capacity of 13%, up one percentage point compared to the previous 
year.

• Since 2000, over 28% of new capacity installed has been wind power, 55% 
renewables and 92% renewables and gas combined. 

• The EU power sector continues its move away from fuel oil and coal with each 
technology continuing to decommission more than it installs.

• Annual installations of wind power have increased over the last 13 years, from 
3.2 GW in 2000 to 11.2 GW in 2013, a compound annual growth rate of 10%.

• A total of 117.3 GW is now installed in the European Union, an increase in 
installed cumulative capacity of 10% compared to the previous year.

• Germany remains the EU country with the largest installed capacity followed by 
Spain, the UK and Italy. Fifteen EU countries have more than 1 GW of installed 
capacity, including two newer EU countries (Poland and Romania), and eight EU 
countries have more than 4 GW of installed capacity.

• The volatility across Europe has contributed to 46% of all new installations 
in 2013 being in just two countries (Germany and the UK), a significant 
concentration compared to the trend of previous years whereby installations 
were increasingly spread across healthy European Markets. This is a level of 
concentration that has not been seen in the EU’s wind power market since 
2007 when the three wind energy pioneering countries (Denmark, Germany 
and Spain) together represented 58% of all new installations that year.  

• A number of previously healthy markets such as Spain, Italy and France have 
seen their rate of wind energy installations decrease significantly in 2013, by 
84%, 65% and 24% respectively. 

• Offshore saw a record growth in 2013 (+1.6 GW); the outlook for 2014 and 
2015 is stable, but not growing.

• The wind power capacity installed by the end of 2013 would, in a normal wind 
year, produce 257 TWh of electricity, enough to cover 8% of the EU’s electricity 
consumption – up from 7% the year before.  
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PORTUGAL
4,724

SPAIN
22,959

FRANCE
8,254

UNITED 
KINGDOM
10,531

IRELAND
2,037

BELGIUM
1,651

NETHERLANDS
2,693

LUXEMBOURG
58

GERMANY
33,730

POLAND
3,390

DENMARK
4,772

SWEDEN
4,470

FINLAND
448

ESTONIA
280

LATVIA 62

LITHUANIA 279

BELARUS 3

ITALY
8,551

AUSTRIA
1,684

CZECH  
REPUBLIC

269 SLOVAKIA 3

HUNGARY*
329

SLOVENIA
2

ROMANIA
2,599

SERBIA
0 BULGARIA

681

GREECE
1,865

MALTA
0

RUSSIA*
15

NORWAY
768

UKRAINE
371

SWITZERLAND
60

CROATIA
302

TURKEY
2,956

CYPRUS
147

FAROE ISLANDS*
7

* Provisional data or estimate. 
** Former Yugoslav Republic of Macedonia
Note: due to previous year adjustments, 372 MW of project de-commissioning, re-powering and 
rounding of figures, the total 2013 end-of-year cumulative capacity is not exactly equivalent to 
the sum of the 2012 end-of-year total plus the 2013 additions.

Installed 2012 End 2012 Installed 2013 End 2013
Candidate Countries (MW)
FYROM** 0 0 0 0
Serbia 0 0 0 0
Turkey 506 2,312 646 2,956
Total 506 2,312 646 2,956
EFTA (MW)
Iceland 0 0 1,8 1,8
Liechtenstein 0 0 0 0
Norway 166 703 110 768
Switzerland 4 50 13 60

Total 170 753 125 830
Other (MW)
Belarus 0 3 0 3
Faroe Islands 2 2 5 7
Ukraine 125 276 95 371
Russia* 0 15 0 15
Total 127 297 100 397
Total Europe 12,906 109,816 120,030 121,474

Installed 
2012 End 2012 Installed 

2013
End 

2013
EU Capacity (MW)
Austria 296 1,377 308 1,684
Belgium 297 1,375 276 1,651
Bulgaria 158 674 7.1 681
Croatia 48 180 122 302
Cyprus 13 147 0 147
Czech Republic 44 260 9 269
Denmark 220 4,162 657 4,772
Estonia 86 269 11 280
Finland 89 288 162 448
France 814 7,623 631 8,254
Germany 2,297 30,989 3,238 33,730
Greece 117 1,749 116 1,865
Hungary* 0 329 0 329
Ireland 121 1,749 288 2,037
Italy 1,239 8,118 444 8,551
Latvia 12 60 2 62
Lithuania 60 263 16 279
Luxembourg 14 58 0 58
Malta 0 0 0 0
Netherlands 119 2,391 303 2,693
Poland 880 2,496 894 3,390
Portugal 155 4,529 196 4,724
Romania 923 1,905 695 2,599
Slovakia 0 3 0 3
Slovenia 0 0 2 2
Spain 1,110 22,784 175 22,959
Sweden 846 3,582 724 4,470
United Kingdom 2,064 8,649 1,883 10,531
Total EU-28 12,102 106,454 11,159 117,289
Total EU-15 9,879 99,868 9,402 108,946
Total EU-13 2,224 6,586 1,757 8,343

Wind power installed in Europe by end of 
2013 (cumulative)

European Union: 117,289 MW
Candidate Countries: 2,956 MW
EFTA: 830 MW
Total Europe: 121,474 MW

FYROM**
0
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2013 annual installations

Wind power capacity installations

During 2013, 12,030 MW of wind power was installed 
across Europe, of which 11.159 MW was in the 
European Union, 8% less than the previous year.

Of the 11,159 MW installed in the EU, 9,592 MW 
was onshore and 1,567 MW offshore. In 2013, the 
onshore market decreased in the EU by 12%, whilst 
offshore installations grew by 34%. Overall, the wind 
energy market decreased by 8% compared to 2012 
installations. 

Investment in EU wind farms was between €13 billion 
(bn) and €18 bn. Onshore wind farms attracted around 
€8 bn to €12 bn, while offshore wind farms accounted 
for €4.6 bn to €6.4 bn.

In terms of annual installations, Germany was the 
largest market in 2013, installing 3,238 MW of new 
capacity, 240 MW of which (7%) offshore. The UK came 
in second with 1,883 MW, 733 MW of which (39%) 
offshore, followed by Poland with 894 MW, Sweden 
(724 MW), Romania (695 MW), Denmark (657 MW), 
France (631 MW) and Italy (444 MW).

The emerging markets of central and eastern Europe, 
including Croatia, installed 1,755 MW, 16% of total 
installations. In 2013, these countries represent a 
slightly smaller share of the total EU market than in 
2012 (18%).

Moreover, 46% of all new EU installations in 2013 
were in just two countries (Germany and the Uk), a 
significant concentration compared to the trend of 
previous years when installations were increasingly 
spread across Europe. This is a level of concentration 
that has not been seen in the EU’s wind power market 

since 2007 when the three wind energy pioneering 
countries (Denmark, Germany and Spain) together 
represented 58% of all new installations that year.  

A number of previously large markets such as Spain, 
Italy and France have seen their rate of wind energy 
installations decrease significantly in 2013, by 84%, 
65%, 24% respectively. 

Offshore accounted for almost 14% of total EU wind 
power installations in 2013, four percentage points 
more than in 2012, further confirming the high level 
of concentration in annual installations during 2013.

FIGURE 1.1: EU MEMBER STATE MARKET SHARES FOR NEW 

CAPACITY INSTALLED DURING 2013 IN MW. TOTAL 11,159 MW 
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Power capacity installations

Overall, during 2013, 35 GW of new power generating 
capacity was installed in the EU, 10 GW less than in 
2012.  

Wind power accounted for 32% (11.2 GW) of new 
installations in 2013. Followed by solar PV (31%, 11 
GW) and gas (21%, 7.5 GW).

No other technologies compare to wind, PV and gas in 
terms of new installations. Coal installed 1.9 GW (5% 
of total installations), biomass 1.4 GW (4%), hydro 1.2 
GW (4%), CSP 419 MW (1%), fuel oil 220 MW, waste 
180 MW, nuclear 120 MW, geothermal 10 MW and 
ocean 1 MW.

During 2013, 10 GW of gas capacity was decommis-
sioned, as were 7.7 GW of coal, 2.7 GW of fuel oil and 
750 MW of biomass capacity.

FIGURE 1.3: NEW INSTALLED POWER CAPACITY AND DECOMMISSIONED POWER CAPACITY IN MW 

FIGURE 1.2: SHARE OF NEW POWER CAPACITY INSTALLATIONS 

IN EU, TOTAL 35,181 MW                 
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FIGURE 2.1: INSTALLED POWER GENERATING CAPACITY PER YEAR IN MW AND RENEWABLE ENERGY SHARE (%) 

In 2000, new renewable power capacity installations 
totalled a mere 3.6 GW. Since 2010, annual renew-
able capacity additions have been between 24.7 GW 
and 35.2 GW, eight to ten times higher than in 2000.

The share of renewables in total new power capacity 
additions has also grown. In 2000, the 3.6 GW 

Renewable power capacity installations 

Trends & cumulative installations

represented 22.4% of new power capacity installa-
tions, increasing to 25 GW representing 72% in 2013.

385 GW of new power capacity has been installed in 
the EU since 2000. Of this, over 28% has been wind 
power, 55% renewables and 92% renewables and gas 
combined.

 

In 2013, a total of 25.4 GW of renewable power 
capacity installations were installed. Over 72% of all 
new installed capacity in the EU was renewable. It was, 
furthermore, the sixth year running that over 55% of all 
new power capacity in the EU was renewable. 

Renewable power capacity installations

FIGURE 1.4: 2013 SHARE OF NEW RENEWABLE POWER 

CAPACITY INSTALLATIONS IN MW, TOTAL 25,450 MW 
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Total installed power capacity

Wind power’s share of total installed power capacity 
has increased five-fold since 2000; from 2.4% in 2000 
to 13% in 2013. Over the same period, renewable 

FIGURE 2.3: EU POWER MIX 2000  FIGURE 2.4: EU POWER MIX 2013 

FIGURE 2.2: NET ELECTRICITY GENERATING INSTALLATIONS IN THE EU 2000-2013 (GW)  

The net growth since 2000 of gas power (131.7 GW), 
wind (115.4 GW) and solar PV (80 GW) was at the 
expense of fuel oil (down 28.7 GW), coal (down 19 
GW) and nuclear (down 9.5 GW). The other renewable 
technologies (hydro, biomass, waste, CSP, geothermal 
and ocean energies) have also been increasing their 
installed capacity over the past 13 years, albeit more 
slowly than wind and solar PV.

Net changes in EU installed power capacity 2000-2013 

The EU’s power sector continues to move away from 
fuel oil, coal and nuclear while increasing its total 
installed generating capacity with gas, wind, solar PV 
and other renewables.
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Total installed power capacity 

Annual wind power installations in the EU have 
increased steadily over the past 13 years from 3.2 

GW in 2000 to 11 GW in 2013, a compound annual 
growth rate of over 10%.

A closer look at wind power installations

FIGURE 3.1: ANNUAL WIND POWER INSTALLATIONS IN EU (GW) 
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National breakdown of wind power installations 

In 2000, the annual wind power installations of the 
three pioneering countries – Denmark, Germany and 
Spain – represented 85% of all EU wind capacity addi-
tions. By 2012, they represented only 29% of total 
installations. In 2013, although the Spanish market 
contracted significantly compared to the previous year 
(-84%), the German market grew by 36% and instal-
lations in the three pioneering countries together 
represented 36% of the EU market. 

Moreover, in 2000, the countries that make up, today, 
the 131 newer EU Member States, had no wind energy, 
in 2013, they reached 16% of the EU’s total market. 
However, 90% of those installations were in just two 
countries, Poland and Romania. 

This indicates that the renewables policy instability that 
has affected numerous countries in the EU is leading 
to increased concentration of wind energy installation 
in a handful of countries. 

FIGURE 3.2 SHARE OF EU WIND POWER MARKET, PIONEERING COUNTRIES, NEWER MEMBER STATES, AND REST OF EU (GW)   
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Cumulative wind power installations

A total of 117 GW is now installed in the European 
Union, a growth of 10% on the previous year and lower 
to the growth recorded in 2012 (+12% compared 
to 2011). Germany remains the EU country with the 
largest installed capacity, followed by Spain, the UK, 
Italy and France. Eleven other EU countries have over 
1 GW of installed capacity: Austria, Belgium, Denmark, 
France, Greece, Ireland, The Netherlands, Poland, 
Portugal, Romania and Sweden.

Eight of the latter (Denmark, France, Germany, Italy, 
Portugal, Spain, Sweden, United Kingdom), have more 
than 4 GW of installed wind energy capacity.  

Onshore and offshore annual markets 

2013 was a record year for offshore installations, with 1,567 MW of new capacity grid connected. Offshore wind 
power installations represent over 14% of the annual EU wind energy market, up from 10% in 2012.

FIGURE 3.3: ANNUAL ONSHORE AND OFFSHORE INSTALLATIONS (MW) 
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FIGURE 3.5: EU MEMBER STATE MARKET SHARES FOR TOTAL 

INSTALLED CAPACITY (TOTAL 118 GW) 

TABLE 1: WIND ENERGY SHARE OF EU ELECTRICITY CONSUMPTION2 

Germany (34.3 GW) and Spain (23 GW) have the largest 
cumulative installed wind energy capacity in Europe. 
Together they represent 49% of total EU capacity. The 
UK, Italy and France follow with, respectively, 10.5 GW 
(9% of total EU capacity), 8.6 GW (7%) and 8.3 GW 
(7%). Amongst the newer Member States, Poland, with 
3.4 GW (2.9%) of cumulative capacity, is now in the 
top 10, in front of the Netherlands (2.7 GW, 2%), and 
Romania is 11th with 2.6 GW (2%).

Germany
34

29%

Others
13

11%

Spain
23

20%UK
11
9%

Italy
9
7% 

France
8
7% 

Denmark
5
4% 

Portugal
5
4% 

Sweden
4
4% 

Poland
3
3% 

Netherlands
3
2% 

The wind energy capacity currently installed in the EU 
would produce in an average wind year 257 TWh of 

2  Wind energy penetration levels are calculated using average capacity factors onshore and offshore and Eurostat electricity 
consumption figures (2011). Consequently, table 1 indicates approximate share of consumption met by the installed wind energy 
capacity at end 2013. The figure does not represent real wind energy production over a calendar year. 

Estimated wind energy production

electricity, enough to cover the 8% of the EU’s total 
electricity consumption.  

Total EU 
electricity 

consumption

Onshore wind 
energy production

Offshore wind 
energy production

Share of EU 
consumption met 
by onshore wind

Share of EU 
consumption met 
by offshore wind

Share of EU 
consumption met 

by wind

3,280 TWh 233 TWh 24 TWh 7.1% 0.7% 7.8%



Comparative Life-Cycle Air
Emissions of Coal, Domestic Natural
Gas, LNG, and SNG for Electricity
Generation
P A U L I N A J A R A M I L L O , * , †

W . M I C H A E L G R I F F I N , † , ‡ A N D
H . S C O T T M A T T H E W S † , §

Civil and Environmental Engineering Department, Tepper
School of Business, and Department of Engineering and
Public Policy, Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, Pennsylvania 15213-3890

The U.S. Department of Energy (DOE) estimates that in
the coming decades the United States’ natural gas (NG)
demand for electricity generation will increase. Estimates
also suggest that NG supply will increasingly come
from imported liquefied natural gas (LNG). Additional
supplies of NG could come domestically from the production
of synthetic natural gas (SNG) via coal gasification-
methanation. The objective of this study is to compare
greenhouse gas (GHG), SOx, and NOx life-cycle emissions
of electricity generated with NG/LNG/SNG and coal.
This life-cycle comparison of air emissions from different
fuels can help us better understand the advantages
and disadvantages of using coal versus globally sourced
NG for electricity generation. Our estimates suggest that
with the current fleet of power plants, a mix of domestic
NG, LNG, and SNG would have lower GHG emissions than
coal. If advanced technologies with carbon capture and
sequestration (CCS) are used, however, coal and a mix of
domestic NG, LNG, and SNG would have very similar life-
cycle GHG emissions. For SOx and NOx we find there are
significant emissions in the upstream stages of the NG/
LNG life-cycles, which contribute to a larger range in SOx
and NOx emissions for NG/LNG than for coal and SNG.

1. Introduction
Natural gas currently provides 24% of the energy used by
United States homes (1). It is an important feedstock for the
chemical and fertilizer industry. Low wellhead gas prices
(less than $3/thousand cubic feet (Mcf) (2)) spurred a surge
in construction of natural-gas-fired power plants: between
1992 and 2003, while coal-fired capacity increased only from
309 to 313 GW, natural-gas-fired capacity more than tripled,
from 60 to 208 GW (3). Adding to this was the Energy
Information Agency’s (EIA) prediction of continued low
natural gas prices (around $4/Mcf) through 2020 (4), lower
capital costs, shorter construction times, and generally lower
air emissions for natural-gas-fired plants that allowed power
generators to meet the clean air standards (5). However,
instead of remaining near projected levels, the average

wellhead price of natural gas peaked at $11/Mcf in October
2005 (6). This price increase made natural gas uneconomical
as a feedstock, so most natural-gas-fired plants are operating
below capacity (7). Despite these trends, natural gas con-
sumption is expected to increase by 20% of 2003 levels by
2030. Demand from electricity generators is projected to grow
the fastest. At the same time, natural gas production in the
United States and pipeline imports from Canada and Mexico
are expected to remain fairly constant (8). The gap between
North American supply and U.S. demand can only be met
with alternative sources of natural gas, such as imported
liquefied natural gas (LNG) or synthetic natural gas (SNG)
produced from coal. Current projections by EIA estimate
that LNG imports will increase to 16% of the total U.S. natural
gas supply by 2030 (8). Alternatively, Rosenberg et al. call for
congress to promote gasification technologies that use coal
to produce SNG. This National Gasification Strategy calls for
the United States to produce 1.5 trillion cubic feet (tcf) of
synthetic natural gas per year within the next 10 years (7),
equivalent to 5% of expected 2030 demand.

The natural gas system is one of the largest sources of
greenhouse gas emissions in the United States, generating
around 132 million tons of CO2 equivalents annually (1).
Significant emissions of criteria air pollutants also come from
upstream combustion life-cycle stages of the gas. Emissions
from the emerging LNG life-cycle stages or from the
production of SNG have not been studied in detail. If larger
percentages of the U.S. supply of natural gas will come from
these alternative sources, then LNG or SNG supply chain
emissions become an important part of understanding overall
natural gas life-cycle emissions. Also, comparisons between
coal and natural gas that concentrate only on the emissions
at the utility plant may not be adequate. The objective of this
study is to perform a life-cycle analysis (9, 10) of natural gas,
LNG, and SNG. Direct air emissions from the processes during
the life-cycle will be considered, as well as air emissions from
the combustion of fuels and electricity used to run the
process. A comparison with coal life-cycle air emissions will
be presented, in order to have a better understanding of the
advantages and disadvantages of using coal versus natural
gas for electricity generation.

2. Fuel Life-Cycles
The natural gas life-cycle starts with the production of natural
gas and ends at the combustion plant. Natural gas is extracted
from wells and sent to processing plants where water, carbon
dioxide, sulfur, and other hydrocarbons are removed. The
produced natural gas then enters the transmission system.
The U.S. transmission system also includes some storage of
natural gas in underground facilities such as reconditioned
depleted gas reservoirs, aquifers, or salt caverns to meet
seasonal and/or sudden short-term demand. From the
transmission and storage system, some natural gas goes
directly to large-scale consumers, like electric power genera-
tors, which is modeled here. The rest goes into local
distribution systems that deliver it to residential and com-
mercial consumers via low-pressure, small-diameter pipe-
lines.

The use of liquefied natural gas (LNG) adds three
additional life-cycle stages to the natural gas life-cycle
described above. Natural gas is produced and processed to
remove contaminants and transported by pipeline relatively
short distances to be liquefied. In the liquefaction process,
natural gas is cooled and pressurized (11). Liquefaction plants
are generally located in coastal areas of LNG exporting
countries and dedicated LNG ocean tankers transport LNG
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to the United States. Upon arriving, the LNG tankers offload
their cargo and the LNG is regasified. At this point the
regasified LNG enters the U.S. natural gas transmission
system.

The coal life-cycle is conceptually simpler than the natural
gas life-cycle, consisting of three major steps: coal mining
and processing, transportation, and use/combustion.

U.S. coal is produced from surface mines (67%), or
underground mines (33%) (1). Mined coal is processed to
remove impurities. Coal is then transported from the mines
to the consumers via rail (84%), barge (11%), and trucks (5%)
(12). More than 90% of the coal used in the United States is
used by the electric power sector, which is modeled here (8).

The life-cycle of SNG is a combination of some stages
from the coal life-cycle and some stages of the natural gas
life-cycle. Coal is mined, processed, and transported, as in
the coal life-cycle, to the SNG production plant. At this plant,
syngas, a mixture of carbon monoxide (CO) and hydrogen
(H2), is produced by gasification and converted, via metha-
nation, to methane and water. The SNG is then sent to the
natural gas transmission system, described above, and on to
the electric power generator.

3. Methods for Calculating Life-Cycle Air Emissions
In our study we investigate the life-cycle air emissions from
coal, natural gas, LNG, and SNG use. All fossil fuel options
are used to produce electricity and combustion emissions
are included as a component of the each life-cycle. For GHG,
the emissions factors at power plants used are 120 lb CO2

equiv/MMBtu of natural gas and 205 lb CO2 equiv/MMBtu
of coal. The SOx and NOx emissions at power plants are
presented in the results section and in the Supporting
Information

3.1. Life-Cycle Air Emissions from Natural Gas produced
in North America. In 2003, the total consumption of natural
gas in the United States was over 27 trillion cubic feet (tcf).
Of this, 26.5 tcf were produced in North America (U.S.,
Canada, and Mexico) (13). According to the Environmental
Protection Agency (EPA), 1.07% of the natural gas produced
is lost in its production, processing, transmission, and storage
(14). Total methane emissions were calculated using the
percentage of natural gas lost. It was also assumed that natural
gas has an average heat content of 1030 Btu/ft3 (13), and that
96% of the natural gas lost is methane, which has a density
of 0.0424 lb/ ft3 (14).

In 1993 the U.S. EPA established the Natural Gas STAR
program to reduce methane emissions from the natural gas
industry. Data from this program for the reductions in
methane lost in the natural gas system, as described in the
Supporting Information, were combined with the data
described above to develop a range of methane emissions
factors for the North American natural gas life-cycle stages.

Carbon dioxide emissions are produced from the com-
bustion of natural gas used during various life-cycle stages
and from the production of electricity consumed during
transport. EIA provides annual estimates of the amount of
natural gas used for the production, processing, and transport
of natural gas. In 2003, approximately 1900 billion cubic feet
of natural gas were consumed during these stages of the
natural gas life-cycle (13). Total carbon dioxide emissions
were calculated using a carbon content in natural gas of
31.90 lb C/MMBtu and an oxidation fraction of 0.995 (1).
According to the Transportation Energy Data Book, 3 billion
kWh were used for natural gas pipeline transport in 2003
(15). The average GHG emission factor from the generation
of this electricity is 1400 lb CO2 equiv/MWh (16). These CO2

emissions were added to methane emissions to obtain the
upstream combustion GHG emission factors for North
American natural gas.

SOx and NOx emissions from the natural gas upstream
stages of the life-cycle come from the combustion of the
fuels used to produce the energy that runs the system, as
given in the Supporting Information. Total emissions from
flared gas were calculated using the AP 42 Emission Factors
for natural gas boilers (17). A range of emissions from the
combustion of the natural gas used during the upstream
stages of the life-cycle was developed using the AP 42
Emissions Factors for reciprocating engines and for natural
gas turbines (17). Emissions from generating the electricity
used during natural gas pipeline operations were estimated
using the most current average emission factors given by
EGRID: 6.04 lb SO2/MWh and 2.96 lb NOx/MWh (16). Note
that EGRID reports emissions of SO2 only. Other references
used in this paper report total SOx emission. For this paper,
sulfur emission will be reported in terms of SOx emissions.

In addition to emissions from the energy used during the
life-cycle of natural gas, SOx emissions are produced in the
processing stage of the life-cycle, when hydrogen sulfide (H2S)
is removed from the sour natural gas to meet pipeline
requirements. A range of SOx emissions from this processing
of natural gas was developed using the AP 42 emissions factors
for natural gas processing and for sulfur recovery (17). To
use the AP 42 emission factors for sulfur recovery, we found
that in 2003 1945 thousand tons of sulfur were recovered
from 14.7 trillion cubic feet of natural gas resulting in a
calculated average natural gas H2S mole percentage of 0.0226.
This was then used with the AP 42 emission factors for natural
gas processing.

3.2. Air Emissions from the LNG Life-Cycle. In 2003, 500
billion cubic feet of natural gas were imported in the form
of LNG (13). In 2003, 75% of the LNG imported to the United
States came from Trinidad and Tobago, but this percentage
is expected to decrease as more imports come from Russia,
the Middle East, and Southeast Asia (13). According to EIA,
the LNG tanker world fleet capacity should have reached 890
million cubic feet of liquid (equivalent to 527 billion cubic
feet of natural gas) by the end of 2006 (18). There are currently
5 LNG terminals in operation in the United States, with a
combined base load capacity of 5.3 billion cubic feet per day
(about 2 trillion cubic feet per year). In addition to these
terminals, there are 45 proposed facilities in North America,
18 of which have already been approved by the Federal Energy
Regulatory Commission (FERC) (19).

Due to unavailability of data for emissions from natural
gas production in other countries, it is assumed that natural
gas imported to the United States in the form of LNG produces
the same emissions from the production and processing life-
cycle stages as North American natural gas. Those stages are
incorporated for LNG. Most of the natural gas converted to
LNG is produced from modern fields developed and operated
by multinational oil and gas companies, so they are assumed
to be operated in a similar way to those in the United States.

It is expected that transportation of natural gas from the
production field to the liquefaction plant would have
emissions similar to those of pipeline transport of domestic
natural gas. But the emission factor for the U.S. system (which
is included in the LNG life-cycle) is based on total pipeline
distances of over 200 000 miles (20). Because LNG facilities
are closely paired with gas fields, it is expected that the average
distance from production field to a LNG facility would be
much smaller than 200 000 miles. Also, because there were
no reliable data for the myriad of fields and facilities and
suspected impact on the overall life cycle would be minimal,
this transport from the fields to the liquefaction terminals
was ignored. This would slightly underestimate the emissions
from the LNG life cycle.

Additional emission factors were developed for the
liquefaction, transport, and regasification life-cycle stages
of LNG. Tamura et al. have reported emission factors for the
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liquefaction stage in the range of 11-31 lb CO2 equiv/MMBtu
(21). The sources of these emissions are outlined in the
Supporting Information.

LNG is shipped to the United States via LNG tankers.
LNG tankers are the last ship type to use steam turbine
technology in their engines. This technology allows for easy
use of boil-off gas (BOG) in a gas boiler. Boil-off rates in LNG
tankers range between 0.15% and 0.25% per day when loaded
(22, 23). When there is not enough BOG available, a fuel oil
boiler is used to produce the steam. In addition to this benefit,
steam turbines require less maintenance than diesel engines,
which is beneficial to these tankers that have to be readily
available to leave a terminal in case of emergency (22).

Most LNG tankers currently in operation have a capacity
to carry between 4.2 and 5.3 million cubic feet of LNG (2.6
and 3.2 billion cubic feet of gas). There are smaller tankers
available, but they are not widely used for transoceanic
transport. There is also discussion about building larger
tankers (8.8 million cubic feet), however none of the current
U.S. terminals can handle tankers of this size (18).

The rated power of the LNG tankers ranges between 20
and 30 MW, and they operate under this capacity around
75% of the time during a trip (24, 25). The energy required
to power this engine is 11.6 MMBtu/MWh (26). As previously
mentioned, some of this energy is provided by BOG and the
rest is provided by fuel oil. A loaded tanker with a rated
power of 20 MW, and 0.12% daily boil-off rate would consume
3.88 million cubic feet of gas per day and 4.4 tons of fuel oil
per day. The same tanker would consume 115 tons of fuel
oil per day on they way back to the exporting country
operating under ballast conditions. A loaded tanker with a
rated power of 30 MW, and a 0.25% daily boil-off rate would
get all its energy from the BOG, with some excess gas being
combusted to reduce risks of explosion (22). Under ballast
conditions, the same tanker would consume 172 tons of fuel
oil per day.

For LNG imported in 2003 the average travel distance to
the Everett, MA LNG terminal was 2700 nautical miles (13,
27). In the future LNG could travel as far as far as 11 700
nautical miles (the distance between Australia and the Lake
Charles, LA LNG terminal (27)). This range of distances is
representative of distances from LNG countries to U.S.
terminals that could be located on either the East or West
coasts. To estimate the number of days LNG would travel (at
a tanker speed of 20 knots (22)), these distances were used.
This trip length can then be multiplied by the fuel con-
sumption of the tanker to estimate total trip fuel consumption
and emissions, and these can then be divided by the average
tanker capacity to obtain a range of emission factors for LNG
tanker transport between 2 and 17 lb CO2 equiv/MMBtu.

Regasification emissions were reported by Tamura et al.
to be 0.85 lb CO2 equiv/MMBtu (21). Ruether et al. report an
emission factor of 3.75 lb of CO2 equiv/MMBtu for this stage
of the LNG life-cycle by assuming that 3% of the gas is used
to run the regasification equipment (28). The emission
reported by Tamura et al. differs because they assumed only
0.15% of the gas is used to run the regasification terminal,
while electricity, which may be generated with cleaner energy
sources, provides the additional energy requirements. These
values were used as lower and upper bounds of the range
of emissions from regasification of LNG.

As done for the carbon emissions, natural gas produced
in other countries and imported to the United States in the
form of LNG is assumed to have the same SOx and NOx

emissions in the production, processing, and transmission
stages of the life-cycle as for natural gas produced in North
America. Emission ranges for the liquefaction and regasifi-
cation of natural gas were calculated using the AP 42 emission
factors for reciprocating engines and natural gas turbines
(17). It is assumed that 8.8% of natural gas is used in the

liquefaction plant (21) and 3% is used in the regasification
plants (28). Emissions of SOx, and NOx from transporting the
LNG via tanker were calculated using the AP 42 emission
factor for natural gas boilers and diesel boilers, as well as the
tanker fuel consumption previously described.

3.3. Air Emissions from the Coal Life-Cycle. Greenhouse
gas emissions from the mining life-cycle stage were developed
from methane releases and from combustion of fuels used
at the mines. EPA estimates that methane emissions from
coal mines in 1997 were 75 million tons of CO2 equivalents,
of which 63 million tons came from underground mines and
12 million tons came from surface mines (1). CO2 is also
emitted from mines through the combustion of the fuels
that provide the energy for operation. The U.S. Census Bureau
provides fuel consumption data for mines in 1997 (29). These
data are available in the Supporting Information. Fuel
consumption data were converted to GHG emissions using
the carbon content and heat content of each fuel and an
oxidation fraction given in EPA’s Inventory of U.S. Green-
house Gas Emissions Sources and Sinks (1) (see Supporting
Information). Emissions from the generation of the electricity
consumed were calculated using an average 1997 emission
factor of 1400 lb CO2 equiv/MWh (16). These total emissions
were then converted to an emission factor using the amount
of coal produced in 1997 and the average heat content of this
coal.

Emissions from the transportation of coal were calculated
using the EIO-LCA tool developed at Carnegie Mellon
University (30). To use this tool, economic values for coal
transportation were needed. In 1997, the latest year for which
the EIO-LCA tool has data, 84% of coal was transported via
rail, 11% via barge, and 5% via truck. The cost for rail transport,
barge, and truck transport was 13.9, 9.5, and 142.7 mills/
ton-mile respectively (12). For a million ton-miles of coal
transported, EIO-LCA estimates that 43.6 tons of CO2

equivalents are emitted from rail transportation, 5.89 tons
of CO2 equivalents from water transportation, and 69 tons
of CO2 equivalents from truck transportation (30). These
emissions were then converted to an emission factor by using
the average travel distance of coal in each mode (796, 337,
and 38 miles by rail, barge, and truck, respectively), the
weighted average U.S. coal heat content of 10 520 Btu/lb
(31) and the coal production data for 1997 (see Supporting
Information).

The energy consumption data used to develop carbon
emissions from the mining life-cycle stage were used to
develop SOx and NOx emission factors for coal. AP 42
emissions factors for off-road vehicles, natural gas turbines,
reciprocating engines, light duty gasoline trucks, large
stationary diesel engines, and gasoline engines were used to
develop this range of emission factors (17, 32). In addition,
the average emission factors from electricity generation in
1997 (3.92 lb NOx/MWh and 7.86 lb SO2/MWh (16)) were
used to include the emissions from the electricity used in
mines.

SOx and NOx emissions for coal transportation were again
calculated using EIO-LCA (30). EIO-LCA estimates that a
million ton-miles of coal transported via rail results in
emissions of 0.02 tons of SOx and 0.4 tons of NOx. A million
ton-miles of coal transported via water would emit 0.07 tons
of SOx, and 0.36 tons of NOx. Finally, a million ton-miles of
coal transported via truck would emit 0.06 tons of SOx, and
1.42 tons of NOx (30). These data were added to emissions
from mines to find the total SOx and NOx emission factors
for the upstream stages of the coal life-cycle.

3.4. Air Emissions from the SNG Life-Cycle. Performance
characteristics for two SNG plants are given in the Supporting
Information. These plants have a higher heating value
efficiency between 57% and 60% (33, 34). Using these
efficiencies, emissions from coal mining, processing, and
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transportation previously obtained were converted to pounds
of CO2 equiv/MMBtu of SNG. The data were also used to
calculate the emissions at the gasification-methanation plant
using a coal carbon content of 0.029 tons/MMBtu and a
calculated SNG storage fraction of 37% (1). Finally, the
emissions from transmission, storage, distribution, and
combustion of SNG are the same as those for all other natural
gas.

To develop the SOx and NOx emissions from the life-cycle
of SNG, the emissions from coal mining and transport
developed in the previous section in pounds per MMBtu of
coal were converted to pounds per MMBtu of SNG using the
efficiencies previously discussed. In addition, the emissions
from natural gas transmission and storage were assumed to
represent emissions from these life-cycle stages of SNG. The
emissions from the gasification-methanation plant were
taken from emission data for an Integrated Coal Gasification
Combine Cycle (IGCC) plant, which operates with a similar
process. Bergerson (35) reports SOx emissions factors from
IGCC between 0.023 and 0.15 lb/MMBtu coal (0.026-0.17
lb/MMBtu of coal if there is carbon capture), and a NOx

emission factor of 0.0226 lb/MMBtu coal (0.0228 lb/MMBtu
of coal if there is carbon capture). These were converted to
lb/MMBtu of SNG using the same coal-to-SNG efficiencies
previously described.

4. Results
4.1. Comparing Fuel Life-Cycle Emissions for Fuels Used
at Currently Operating Power Plants. Emission factors for
the fuel life-cycles were calculated as pounds of pollutants
per MMBtu of fuel produced, as presented in the Supporting
Information. Since coal and natural gas power plants have
different efficiencies, 1 MMBtu of coal does not generate the
same amount of electricity as 1 MMBtu of natural gas/LNG/
SNG. For this reason, emission factors given in Table 10S
and Table 11S in the Supporting Information were converted
to pounds of pollutant per MWh of electricity generated.
This conversion is done using the efficiency of natural gas
and coal power plants. According to the U.S. Department of
Energy (DOE), currently operating coal power plants have
efficiencies ranging from 30% to 37%, while currently
operating natural gas power plants have efficiencies ranging
from 28% to 58% (36). The life-cycle GHG emissions factors
of natural gas, LNG, coal, and SNG described in the
Supporting Information were converted to a lower and upper
bound emission factor from coal and natural gas power plants
using these efficiency ranges. Figure 1 shows the final bounds

for the emission factors for each fuel cycle. The life-cycle for
each fuel use includes fuel combustion at a power plant. The
combustion-only emissions for each fuel are shown for
comparison. The solid horizontal line shown represents the
current average GHG emission factor for U.S. electricity
generation: 1400 lb CO2 equiv/MWh (16). Note that in this
graph no carbon capture and storage (CCS) is performed at
any stage of the life-cycle. CCS is a process by which carbon
emissions are separated from other combustion products
and injected into underground geologic formations such as
saline formations or depleted oil/gas fields. A scenario in
which CCS is performed at power plants as well as in
gasification-methanation plants will be discussed in the
following section.

It can be seen that combustion emissions from coal-fired
power plants are higher than those from natural gas: the
midpoint between the lower and upper bound emission
factors for coal combustion is approximately 2100 lb CO2

equiv/MWh, while the midpoint for natural gas combustions
is approximately 1100 lb CO2 equiv/MWh. This reflects the
known environmental advantages from combustion of
natural gas over coal. Figure 1 also shows that the life-cycle
GHG emissions of electricity generated with coal are domi-
nated by combustion, and adding the upstream life-cycle
stages does not change the emission factor significantly, with
the midpoint between the lower and upper bound life-cycle
emission factors being 2270 lb CO2 equiv/MWh. For natural-
gas-fired power plants the emissions from the upstream
stages of the natural gas life-cycle are more significant,
especially if the natural gas used is synthetically produced
from coal (SNG). The midpoint life-cycle emission factor for
domestic natural gas is 1250 lb CO2 equiv/MWh; for LNG
and SNG it is 1600 lb CO2 equiv/MWh and 3550 lb CO2 equiv/
MWh, respectively. SNG has much higher emission factors
than the other fuels because of efficiency losses throughout
the system. It is also interesting to note that the range of
life-cycle GHG emissions of electricity generated with LNG
is significantly closer to the range of emissions from coal
than the life-cycle emissions of natural gas produced in North
America. The upper bound life-cycle emission factor for LNG
is 2400 lb CO2 equiv/MWh, while the upper bound life-cycle
emission factor for coal is 2550 lb CO2 equiv/MWh.

To compare emissions of SOx and NOx from all life-cycles,
the upstream emission factors and the power plant efficien-
cies from the Supporting Information are used. Emissions of
these pollutants from coal and natural gas power plants in
operation in 2003 were obtained from EGRID (37). Table 1

FIGURE 1. Fuel Combustion and Life-Cycle GHG Emissions for Current Power Plants.
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shows life-cycle emissions for each fuel obtained by adding
the combustion emissions from EGRID to the transformed
upstream emissions. The current average SOx and NOx

emission factors for electricity generated in the United States
are also shown (16).

It can be seen that coal has significantly larger SOx

emissions than natural gas, LNG, or SNG. This is expected
since the sulfur content of coal is much higher than the sulfur
content of other fuels. SNG, which is produced from coal,
does not have high sulfur emissions because the sulfur from
coal must be removed before the methanation process.

For NOx, it can be seen that the upstream stages of
domestic natural gas, LNG, and even SNG make a significant
contribution to the total life-cycle emissions. These upstream
NOx emissions come from the combustion of fuels used to
run the natural gas system: for domestic natural gas,
production is the largest contributor to these emissions; for
LNG most NOx upstream emissions come from the liquefac-
tion plant; finally, for SNG most upstream NOx emissions
come from the gasification-methanation plant.

4.2. Comparing Fuel Life-Cycle Emissions for Fuels Used
with Advanced Technologies. According to the DOE, by 2025
65 GW of inefficient facilities will be retired, while 347 GW
of new capacity will be installed (8). Advanced pulverized
coal (PC), integrated coal gasification combined cycle (IGCC),
and natural gas combined cycle (NGCC) power plants could
be installed. PC, IGCC, and NGCC plants are generally more
efficient (average efficiencies of 39%, 38%, and 50%, respec-
tively (38)) than the current fleet of power plants. In addition,
CCS could be performed with these newer technologies.
Experts believe that sequestration of 90% of the carbon will
be technologically and economically feasible in the next 20
years (5, 38). Having CCS at PC, IGCC, and NGCC plants
decreases the efficiency of the plants to average of 30%, 33%,
and 43%, respectively (38).

Figure 2 was developed using the revised efficiencies for
advanced technologies and the GHG emission factors (in
lb/MMBtu) described in the Supporting Information. This
figure represents total life-cycle emissions for electricity
generated with each fuel. Notice that emissions are shown
with and without CCS. In the case of SNG with CCS, capture
is performed at both the gasification-methanation plant and
at the power plant. The solid horizontal line shown represents
the current average GHG emission factor for electricity
generation in the United States (1400 lb CO2 equiv/MWh)
(16). The upper and lower bound emissions in this figure are
closer together than the upper and lower bounds in Figure
1, because only one power plant efficiency value is used,
while for Figure 1 the upper and lower bound efficiency from
all currently operating power plants was used (this is
especially obvious for the domestic natural gas (NGCC) cases).
It can be seen that, in general, life-cycle GHG emissions of
electricity generated with the fuels without CCS would
decrease slightly compared to emissions from current power
plants that use the same fuel (due to efficiency gains). The

most efficient natural gas plant currently in operation,
however, could have slightly lower emissions than the lower
bound for NGCC, LNGG, and SNGCC, due to efficiency
differences. Three of the cases, however (PC, IGCC, and
SNGCC), would still have higher emissions than the current
average emissions from power plants. If CCS were used,
however, there would be a significant reduction in emissions
for all cases. In addition the midpoints between upper and
lower bound emissions from all fuels are closer together, as
can be seen in Figure 3. This figure also shows how the
upstream from combustion emissions of fuels become
significant contributors to the life-cycle emission factors when
CCS is used.

Table 2 was developed using the upstream SOx and NOx

emission factors obtained in this study and the combustion
emissions reported by Bergerson (35) for PC and IGCC plants
and by Rubin et al. for NGCC plants (38). These reported
combustion emissions can be seen in the Table 12S in the
Supporting Information.

As can be seen from Table 2, if advanced technologies are
used there could be a significant reduction of NOx and SOx

emissions, even if CCS is not available. It is interesting also
to note that a PC plant with CCS could have lower life-cycle
emissions than an IGCC plant with CCS. In the PC case all
sulfur is removed through flue gas desulfurization. The
removed sulfur compounds are then solidified and disposed
of or sold as gypsum. In an IGCC plant with CCS, sulfur is
removed from the syngas before combustion. In these plants,
however, instead of solidifying the sulfur compounds re-
moved and disposing them, the elemental sulfur is recovered
in a process that generates some additional SOx emissions
(35). For NOx, only LNG has higher life-cycle emissions than
the average generated at current power plants.

5. Discussion
Natural gas is an important energy source for the residential,
commercial, and industrial sectors. In the 1990s, the surge
in demand by electricity generators and relatively constant
natural gas production in North America caused prices to
increase, so that in 2005 these sectors paid 58 billion dollars
more than they would have paid if 2000 prices remained
constant. Cumulative additional costs of higher natural gas
prices for residential, commercial, and industrial consumers
between 2000 and 2005 were calculated to be around 120
billion dollars. LNG has been identified as a source of natural
gas that might help reduce prices, but even with an increasing
supply of LNG, EIA still projects average delivered natural
gas prices above $6.5/Mcf in the next 25 years. This is higher
than the $4.5 /Mcf average projected price in earlier reports
before the natural-gas-fired plant construction boom (4).

In addition to LNG, SNG has been proposed as an
alternative source to add to the natural gas mix. The decision
to follow the path of increased LNG imports or SNG
production should be examined in light of more than just
economic considerations. In this paper, we analyzed the
effects of the additional air emissions from the LNG/SNG
life-cycle on the overall emissions from electricity generation
in the United States. We found that with current electricity
generation technologies, natural gas life-cycle GHG emissions
are generally lower than coal life-cycle emissions, even when
increased LNG imports are included. However LNG imports
decrease the difference between GHG emissions from coal
and natural gas. SNG has higher life-cycle GHG emission
than coal, domestic natural gas, or LNG. It is also important
to note that upstream GHG emissions of NG/LNG/SNG have
a higher impact in the total life-cycle emissions than upstream
coal emissions. This is a significant point when considering
a carbon-constrained future in which combustion emissions
are reduced.

TABLE 1. SOx and NOx Combustion and Life-Cycle Emission
Factors for Current Power Plants

fuel SOx (lb/MWh) NOx (lb/MWh)

min max min max

current electricity mix 6.04 2.96
coal combustion 1.54 25.5 2.56 9.08

life-cycle 1.60 25.8 2.83 9.69

natural gas combustion 0.00 1.13 0.12 5.20
life-cycle 0.04 1.49 0.17 9.40

LNG life-cycle 0.094 2.93 0.25 15.4

SNG life-cycle 0.30 3.88 0.65 8.08
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For emissions of SOx, we found that with current electricity
generation technologies, coal has significantly higher life-
cycle emissions than any other fuel due to very high emissions
at current power plants. For NOx, however, this pattern is
different. We find that with current electricity generation
technologies, LNG could have the highest life-cycle NOx

emissions (since emissions from liquefaction and regasifi-
cation are significant), and that even natural gas produced

in North America could have life-cycle NOx emissions very
similar to those of coal. It is important to note that while
GHG emissions contribute to a global problem, SOx and NOx

are local pollutants and U.S. policy makers may not give
much weight to emissions of these pollutants in other
countries.

In the future, as newer generation technologies and CCS
are installed, the overall life-cycle GHG emissions from
electricity generated with coal, domestic natural gas, LNG,
or SNG could be similar. Most important is that all fuels with
advanced combustion technologies and CCS have lower life-
cycle GHG emission factors than the current average emission
factor from electricity generation. For SOx we found that coal
and SNG would have the largest life-cycle emissions, but all
fuels have lower life-cycle SOx emissions than the current
average emissions from electricity generation. For NOx, LNG
would have the highest life-cycle emissions and would be
the only fuel that could have higher emissions than the
current average emission factor from electricity generation,
even with advanced power plant design.

We suggest that advanced technologies are important and
should be taken into account when examining the possibility
of doing major investments in LNG or SNG infrastructure.
Power generators hope that the price of natural gas will
decrease as alternative sources of natural gas are added to
the U.S. mix, so they can recover the investment made in

FIGURE 2. Fuel GHG Life-Cycle Emissions Using Advanced Technologies.

FIGURE 3. Midpoint Life-Cycle GHG Emissions Using Advanced Technologies with CCS.

TABLE 2. SOx and NOx Life-Cycle Emission Factors for
Advanced Technologies

fuel SOx (lb/MWh) NOx (lb/MWh)

min max min max

current electricity mix 6.04 2.96
coal PC w/o CCS 0.24 1.54 1.42 2.46

PC w/ CCS 0.08 0.34 1.90 3.61
IGCC w/o CCS 0.27 1.57 0.47 0.70
IGCC w/ CCS 0.32 1.83 0.54 0.78

natural gas NGCC w/o CCS 0.04 0.20 0.30 2.57
NGCC w/ CCS 0.05 0.24 0.36 3.01

LNG NGCC w/o CCS 0.25 1.04 0.39 5.89
NGCC w/ CCS 0.30 1.23 0.46 6.91

SNG NGCC w/o CCS 0.35 2.15 0.88 1.85
NGCC w/ CCS 0.45 2.80 1.03 2.18
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natural gas plants that are currently producing well under
capacity. We suggest that these investments should be viewed
as sunk costs. Thus, it is important to re-evaluate whether
investing billions of dollars in LNG/SNG infrastructure will
lock us into an undesirable energy path that could make
future energy decisions costlier than ever expected and
increase the environmental burden from our energy infra-
structure.
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1

Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and
SNG for Electricity Generation

Supporting Information

1. Graphical Representation of the Fuel Life-cycles

Figure 1S and Figure 2S below, show the life-cycle stages on natural gas used by electric
power generators, including the stages from the LNG life-cycle. Notice that local
distribution of natural gas falls outside our analysis boundary.

Figure 1S: Domestic Natural Gas Life-cycle.

Figure 2S: LNG Life-cycle.
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Figure 3S and Figure 4S show the life-cycle of coal and synthetic natural gas (SNG)
derived from coal.

Figure 3S: Coal Life-cycle.

Figure 4S: SNG Life-cycle.

2. Calculating Emissions from the Domestic Natural Gas Life-cycle

During the late 1980s and early 1990s the U.S. Environmental Protection Agency (EPA)
conducted a study to determine methane emissions from the natural gas industry (1). This
comprehensive study developed hundreds of activity and emissions factors from all areas
of the natural gas industry. These factors were developed using data collected from
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different sectors of the industry as well as from data collected in field measurements.
Methane emissions from the U.S. natural gas system given as a percentage of natural gas
produced can be seen in Table 1S. This data was used to develop methane emission
factors, as described in the main document. Notice, that Table 1S includes an estimate for
natural gas losses in the local distribution system. This estimate is given here for
reference, but it was not included in our calculation of emissions of natural gas used to
generate electricity.

In addition data from the EPA Natural Gas STAR program was used. The program is a
voluntary partnership with the goal of encouraging the natural gas industry to adopt
practices that increase efficiency and reduce emissions (for example by reducing natural
gas leaks in the pipeline system). Consequently, since 1993, a cumulative total of 338
billion cubic feet of methane emissions have been eliminated. In 2003 alone, 52,900
million cubic feet of methane emissions were eliminated, a 9% reduction over projected
emissions for that year without improved practices (2).

Table 1S: Methane Emissions from North American Gas Life-cycle as a Percentage
of Natural Gas Produced (1).

Carbon dioxide emissions from the different natural gas life-cycle stages were also
calculated. These emissions were calculated using data on the amount of natural gas used
to run the processes, as given in Table 2S, as well as an estimated 3 billion KWh of
electricity used for pipeline transport. These data were also used to calculate SOx and
NOx emissions from the life-cycle, as described in the main document. It should be
mentioned that the pipeline fuel presented in Table 2S includes fuel used by the
transmission system and the local distribution system. As previously described, natural
gas used by electricity generators is bought directly from the transmission system, so that
emissions from the distribution system are not included in our analysis. Due to data
limitations, we were not able to disaggregate pipeline fuel and electricity consumption
between the two systems. To deal with this issue, we use a range of emissions. The
minimum value assumes that none of this fuel is consumed in the transmission system
and the maximum value assumes that all is consumed in the transmission system.

Lifecycle Segment
Emissions as a Percentage

of Gas Produced
Production 0.38%
Processing 0.16%

Transmission and Storage 0.53%
Distribution 0.35%
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Table 2S: Natural Gas Used During the Natural Gas Life-cycle. (3).

Use (as defined by
EIA)

NG Life-cycle Stage Amount
(million ft3)

Flared Gas Production 98,000

Lease Fuel Production 760,000

Pipeline Use Transmission/Distribution 665,000

Plant Fuel Processing 365,000

3. Calculating Emissions from the LNG Life-cycle

As mentioned in the main paper, Tamura et al (4) provide GHG emissions for
liquefaction plants. Table 3S presents the sources of these emissions.

Table 3S: Liquefaction Emission Factors (Adapted from Tamura et al (4)).

Emission Factors
(lb CO2 Equivalent/MMBtu)Liquefaction

Minimum Average Maximum
CO2 from fuel combustion 11 12 13
CO2 from flare combustion 0.00 0.77 1.5

CH4 from vent 0.09 1.3 9.8

CO2 in raw gas 0.09 4.0 6.6

Table 4S provides the distance from LNG exporting countries to two U.S. LNG terminals
and the amount of LNG brought from each country in 2003. These two terminals were
chosen because they are two of the largest terminals in the United States and they
represent longest and shortest tanker travel distances for which route information is
available. In addition, the range of distances provided is also representative of distances
LNG would have to travel if a LNG terminal was located in the U.S. West Coast. Figure
5S shows the emission factors for LNG Tanker transport from each country to each of
these terminals, obtained using the tanker information given in the main document.
Emissions from tanker transport range between 2 and 17 pounds of CO2 Equivalent per
MMBtu of natural gas. These data was also used to calculate the SOx and NOx emission
factors for tanker transport.
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Table 4S: LNG Exporting Countries in 2003.

Exporting
Country

Distance to Lake
Charles Facility

(nautical miles) (5)

Distance to Everett,
MA Facility

(nautical miles) (5)

2003 US Imports
(million cubic feet

NG) (3)
Algeria 5,000 3,300 53,000

Australia 12,000 11,000 0
Brunei 12,000 11,000 0

Indonesia 12,000 11,000 0
Malaysia 12,000 11,000 2,700
Nigeria 6,100 5,000 50,000
Oman 8,900 7,500 8,600
Qatar 9,700 8,000 14,000

Trinidad 2,200 2,000 380,000
UAE 9,600 7,959 0

Russia 9,600 11,000 0
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Figure 5S: Tanker Emission Factors from Each Country.

4. Calculating Emissions from the Coal Life-cycle

Table 5S presents fuel consumption data for coal mines in the U.S., and Table 6S
presents carbon content, heat content of these fuels. These data was used to calculate
GHG emissions factors for coal mines.
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Table 5S: 1997 Fuel Consumption at Coal Mines (6)

Fuel Oil (1000 bbl)
Mine Type

Total Distillate Residual
Gas

(10^9 ft3)
Gasoline

(10^6 gal)
Electricity

(10^6 KWh)
Surface 8,280 7,524 756 0.7 30 42,474

Underground 801 656 145 0.5 4 7,123

Table 6S: Carbon Content, and Heat Content of Different Fuels (7).

Fuel Type
Carbon Content of Fuel

lb/MMBtu Fuel

Heat Content of Fuel
(MMBtu/bbl -

MMBtu/MMcf)

Fraction
Oxidized

Distillate 43.98 5.825 0.99
Residual 47.38 6.287 0.99
Gas 31.90 1,030 0.995
Gasoline 42.66 5.253 0.99

Table 7S: 1997 Coal Production Data (8).

Mine Type
Coal Produced

(1000 tons)
Heat Content of
Coal (BTU/lb)

Surface 669,273 9,626
Underground 420,657 11,944
Total 1,089,930 10,520

As described in the main document, EIO-LCA was used to estimate emission factors
from coal transportation. Table 8S summarizes the emissions resulting from transporting
one million ton-miles of coal via each transportation mode.

Table 8S: EIO-LCA GHG Emission Data for a Million Ton-Miles of Coal
Transported (9).

Sector
Total GHG Emissions
(tons CO2 Equivalent)

Total SOx Emissions
(tons SOx)

Total NOx Emissions
(tons NOx)

Rail Transportation 43.6 0.02 0.40
Water Transportation 5.89 0.07 0.36
Truck Transportation 69.0 0.06 1.42



7

5. Calculating Emissions from the SNG Life-cycle

In order to calculate air emissions from the SNG life-cycle, the emissions from coal
production, processing and transport were converted from pounds per MMBtu of coal
used to pounds per MMBtu of SNG produced using the performance characteristics
of two SNG plants given in Table 9S. The emissions from SNG transport, storage and
use are the same as those from natural gas. The efficiency for the CCS case was
obtained assuming an energy penalty of 16% as described for and IGCC plant by
Rubin et al (10).

Table 9S: SNG Plant Performance Characteristics

Case 1 (11) Case 2 (12)
SNG Output (1. mcf/day and 2. MMBtu/hr) 250 1,739
Efficiency without CCS (HHV) 57% 60%
Efficiency with CCS (HHV) 50% 52%

6. Summary of Emissions from Fuel Life-cycles

Table 10S summarizes GHG emission factors for all fuels. The emission factors
presented in this section are the average emission rate relative to units of fuel produced,
without considering the efficiency of using these fuels. These emission factors can later
be used to develop total inventories of GHG emissions from the annual consumption of
each fuel. Allocation of these emissions for each life-cycle stage can be seen in Figure 6S
through Figure 8S. Note that there are two different emission factors for SNG. In one
case, no carbon capture and sequestration (CCS) is performed at the gasification-
methanation stage. When CCS is performed at the gasification-methanation plant, an
energy penalty is incurred. It was assumed that the energy penalty observed at IGCC
plants with CCS (16%) is representative of the energy penalty at the SNG gasification-
methanation plant (10).  CCS could also be performed at power plants, as discussed in the
main document.

It is also very important to note that the emission factors shown in Table 10S (and the
emission factors given in Table 11S) are not comparable to each other, since one Btu of
coal does not generate the same amount of electricity as one Btu of natural gas or SNG.
These emission factors can be transformed to comparable units, namely lbs/MWh of
electricity produced, by taking into consideration the efficiency of electricity generation.
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Table 10S: Life-cycle GHG Emission Factors

(units:  lbs/MMBtu of Fuel Produced)

North
American NG

LNG Coal
SNG (No CCS at

Gasif./Methan. Plant)
SNG  (CCS at

Gasif./Methan. Plant)Life-cycle
Stages

Min Max Min Max Min Max Min Max Min Max
Upstream 15.3 20.1 29.6 72.3 8.2 16.4 240 286 45.2 65.2

Combustion
(no CCS)

120 120 120 120 205 205 120 120 120 120

Combustion
(with CCS)

12 12 12 12 20.5 20.5 12 12 12 12

SOx and NOx emission factors for the upstream stages of electricity generation for the
fuel life-cycles can be seen in Table 11S. SOx and NOx emissions from the combustion of
fuel at power plants are very dependent on specific plant characteristics, so it was not
possible to transform these power plant emissions (given in lbs/MWh) to the same units
as the emissions from the upstream stages of the life-cycle (lbs/MMBtu) by simply using
the efficiency of the power plants.

Table 11S: Upstream SOx and NOx Emission Factors (units: lbs/MMBtu of Fuel
Produced)

North American
Natural Gas

LNG Coal
SNG (No CCS at
Gasif./Methan.

Plant)

SNG  (CCS at
Gasif./Methan.

Plant)
Pollutant

Min Max Min Max Min Max Min Max Min Max
SOx 0.006 0.030 0.016 0.145 0.007 0.029 0.051 0.316 0.064 0.400
NOx 0.009 0.342 0.022 0.831 0.030 0.535 0.090 0.234 0.104 0.253

7. GHG Emissions Allocated to Fuel Life-cycle Stages

Figure 6S through Figure 8S show how the GHG emissions reported in Table 10S are
allocated among the different life-cycle stages.
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Figure 6S: North American Gas Life-cycle GHG Emission Factors (Units: lbs CO2

Equivalent/MMBtu).

Figure 7S: LNG Life-cycle GHG Emission Factors (Units: lbs CO2

Equivalent/MMBtu).
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Figure 8S: SNG Life-cycle GHG Emission Factors (Units: lbs CO2

Equivalent/MMBtu).

8. Efficiencies of Currently Operating Power Plants

Figure 9S shows the distribution of the efficiencies of currently operating power plants,
obtained using the cumulative distribution function of EIA 2003 electricity generation
data for all utility plants (13). As illustrated in Figure 9S, the median efficiency for
natural gas plants is higher than the median efficiency for coal plants. These efficiencies
were used to convert the emission factors previously presented (in lbs/ MMBtu of fuel) to
lbs/MWh.
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Figure 9S: Efficiencies of Natural Gas and Coal Plants  (13).

9. Combustion Emissions from Advance Technologies

Table 12S reports combustion emissions from advanced power plant technologies. The
emission factors from PC and IGCC plants were reported Bergerson (14) for PC and
IGCC plants. Rubin et al reported the emissions for NGCC plants (10).

Table 12S: Combustion Emissions from Advanced Power Plants.

SOx (lbs/MWh) NOx  (lbs/MWh)Fuel/Pollutant
Min Max Min Max

PC w/o CCS 0.17 1.28 1.16 2.00
PC w/ CCS 0.00 0.01 1.56 3.00

IGCC w/o CCS 0.20 1.30 0.20 0.20
IGCC w/ CCS 0.24 1.52 0.20 0.20

NGCC w/o CCS 0.00 0.00 0.24 0.24
NGCC w/ CCS 0.00 0.00 0.29 0.29
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Introduction 
 
Natural gas currently provides 24% of the energy used by homes and businesses in the 
US (1). It is also an important feedstock for the chemical and fertilizer industry. In the 
early 1990’s the price of natural gas was low (around $3/1000 ft3) and as a result there 
was a surge in construction of natural gas plants (2). Today, the Henry Hub price of 
natural gas is around $15/1000 ft3 (3), and most of these plants are operating below 
capacity. However, natural gas consumption is expected to increase 41% by 2025 (to 30 
trillion cubic feet), with demand from electricity generators growing the fastest 
(increasing 90% by 2025). At the same time natural gas production in North America is 
expected to remain fairly constant at around 24 trillion cubic feet, so that demand of 
imported liquefied natural gas (LNG) will increase to around 6 trillion cubic feet or 20% 
of the total supply by 2025 (3). 
 
The natural gas system is the second largest source of greenhouse gas emissions in the 
US, generating around 132 million tons of CO2 Equivalents (1). Several studies have 
performed emission inventories for the natural gas lifecycle from production to 
distribution.  Usually these analyses have been performed for domestic natural gas, so 
that emissions from the LNG lifecycle stages have been ignored. If, as the DOE estimates 
suggest, larger percentages of the supply of natural gas will come from these imports, 
emissions from these steps in the lifecycle could influence the total natural gas lifecycle 
emissions. Thus, comparisons between coal and natural gas that concentrate only on the 
emissions at the utility plant may not be adequate. The objective of this study is to 
perform an analysis of the natural gas lifecycle greenhouse gas emissions taking the 
emissions from LNG into consideration. Different scenarios for the percentage of natural 
gas as LNG are analyzed. Moreover, a comparison with the coal fuel cycle greenhouse 
gas emissions will be presented, in order to have a better understanding of the advantages 
and disadvantages of using coal versus natural gas for electricity generation. 
 
The Natural Gas Life Cycle 
 
The natural gas life cycle starts with the production of natural gas and ends at the 
combustion plant. NaturalGas.org has a very detailed description of this life cycle. 
Readers are encouraged to visit this website if they need more information about the 
topic.  
 
Geological surveys and seismic studies are used to determine the location of natural gas 
deposits. After these sites have been identified, wells are constructed. There are two types 
of well for the extraction of natural gas: oil wells and natural gas wells. Oil wells are 



drilled primarily to extract oil, but natural gas can also be obtained. Natural gas wells are 
specifically drilled to extract natural gas.  
 
After natural gas is extracted through the wells, it has to be processed to meet the 
characteristics of the natural gas used by consumers. Consumer natural gas is composed 
primarily of methane. However, when natural gas is extracted, it exists with other 
hydrocarbons such as propane and ethane. In addition, the extracted natural gas contains 
impurities such as water vapor and carbon dioxide that must be removed. Natural gas 
processing plants are usually constructed in gas producing regions. The natural gas is 
transported from the extraction sites to these plants through a system of low-diameter, 
low-pressure pipelines. At the plant, water vapor is first removed from the gas by using 
absorption or adsorption methods. Glycol Dehydration is an example of absorption, in 
which glycol, which has a chemical affinity to water, is used to absorb the vapor. Solid-
Desiccant Dehydration is an example of adsorption. In this process the natural gas passes 
through towers that contain activated alumina or other solid desiccants. As the gas is 
passed through these towers, the water particles are retained on the surface of the solids. 
 
As previously mentioned, natural gas is extracted with other hydrocarbons that must be 
removed. The removal of these hydrocarbons, called Natural Gas Liquids (NGL), is done 
with the absorption method or the cryogenic expander process. The absorption method is 
similar to the water absorption method, but instead of glycol, absorbing oil is used. The 
cryogenic expansion method consists of dropping the temperatures of the gas causing the 
hydrocarbons to condense so that they can be separated from the natural gas. The 
absorption method is used to remove heavier hydrocarbons, while lighter hydrocarbons 
are removed using the cryogenic expansion process. 
 
The final step in the processing of natural gas is the removal of sulfur and carbon dioxide. 
Often, natural gas from the wells contains high amounts of these two compounds, and it 
is called sour gas. Sulfur must be removed from the gas because it is a potentially lethal 
chemical if breathed. In addition, sour gas can be corrosive for the transmissions and 
distribution pipelines. The process of removing sulfur and carbon dioxide from the gas is 
similar to the absorption processes previously described.  
 
After the natural gas is processed it enters the transmission system. In the US, this 
transmission system is the interstate natural gas pipeline network, which consists of 
thousands of miles of high-pressure pipelines that transport the gas from producing areas 
to high demand areas. In addition to the pipes, this pipeline system has compressor 
stations along the way, usually placed in 40 to 100 mile intervals. These compressor 
stations use a turbine or an engine to compress the natural gas and maintain the high 
pressure required in the pipeline. The turbines and engines generally run with a small 
amount of the gas from the pipeline. In addition to compressor stations, metering stations 
are also placed along the system to allow companies to better monitor and manage the 
natural gas in the pipes. Moreover valves can be found through the entire length of the 
pipelines to regulate flow. 
 



Natural gas can be stored to meet seasonal demand increases or to meet sudden, short-
term demand increases. Natural gas is usually stored in underground facilities. Such 
facilities could be built in reconditioned depleted gas reservoirs, aquifers or salt caverns. 
According to the Energy Information Administration (EIA), in 2003 the total storage 
capacity in the United States was 8.2 billion cubic feet. 82% of this capacity was in 
depleted gas fields, 15% in depleted aquifers, and 3% in salt caverns. Moreover during 
that year, withdrawals from storage added to 3.1 billion cubic feet while injections totaled 
3.3 billion cubic feet (4). It is important to note that some gas injected into underground 
storage becomes physically unrecoverable gas. This gas is known as base gas.  
 
Distribution is the final step before natural gas is delivered to consumers. Local 
Distribution Companies transport natural gas from delivery points along the transmission 
system to local consumers via a low-pressure, small-diameter pipeline system. Natural 
gas that arrives to a city gate through the transmission system is depressurized, and 
filtered to remove any moisture or particulate content. In addition, Mercaptan is added to 
the gas to create the distinctive smell that allows leaks to be detected. Small compressors 
are used in the distribution system to maintain the pressure required. 
 
When Liquefied Natural Gas (LNG) is added to the mix of natural gas, three additional 
lifecycle stages are created: liquefaction, tanker transport, and regasification. Figure 1 
shows the total life cycle of natural gas including the LNG stages.  
 

 



 

Figure 1: Natural Gas Life Cycle Including LNG. 
 
In the liquefaction process, natural gas is cooled and pressurized to convert it to liquid 
form, reducing its volume by a factor of 610 (5). These liquefaction plants are generally 
located in coastal areas of LNG export countries. Currently 75% of the LNG imported to 
the US comes from Trinidad, but this percentage is expected to decrease as more imports 
come from Russia, the middle east, and southeast Asia (4). LNG tankers bring this gas to 
the US.  According to EIA, there were 151 LNG tankers in operation worldwide as of 
October 2003. The majority of these tankers have the capacity to carry more than 120,000 
cubic meters of liquefied natural gas (equivalent to 2.59 billion cubic feet of natural gas, 
enough gas to supply an average of  31,500 residences for a year (4)) and the total fleet 
capacity is 17.4 million cubic meters of liquid (equivalent to 366 billion cubic feet of 
natural gas). There are currently fifty-five ships under construction that will increase total 
fleet capacity to 25.1 million cubic meters of liquid (equivalent to 527 billion cubic feet 
of natural gas) in 2006 (6).  
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Regasification facilities are the last step LNG must pass through before going into the US 
pipeline system. Regasification facilities are LNG marine terminals where LNG tankers 
unload their gas. These facilities consist of storage tanks and vaporization equipment that 
warms the LNG to return it to the gaseous state. There are currently 5 LNG terminals in 
operation in the US: Lake Charles, Louisiana; Elba Island, Georgia; Cove Point, 
Maryland; Everett, Massachusetts; and a recently opened offshore terminal in the Gulf of 
Mexico. These terminals have a combined base load capacity of 3.05 billion cubic feet 
per day (about 1 trillion cubic feet per year). In addition to these there are over fifty 
proposed facilities for a total proposed capacity of 62 billion cubic feet per day (23 
trillion cubic feet per year). Figure 2 shows the proposed location of these facilities (6). 
 
As shown in Figure 1, natural gas combustion is the last stage in the natural gas lifecycle. 
In the US, natural gas is used for electricity generation, heating, and several industrial 
processes. Approximately 24% of the electricity generated comes from natural gas (1). 
Natural gas plants have heat rates that range from 5,800 BTU/kWh to 12,300 BTU/kWh 
(7). 
 
US Natural Gas Industry in 2003 
 
In 2003, the total supply of natural gas in the US was over 27 trillion cubic feet. Of this, 
26.5 trillion cubic feet were produced in North America (US, Canada, and Mexico), and 
0.5 trillion cubic feet were imported in the form of LNG. 75% of LNG came from 
Trinidad and Tobago. Other exporting countries included Algeria, Malaysia, Nigeria, 
Qatar, and Oman (4). Table 1 shows more detailed statistics about the state of the US 
natural gas industry in 2003. Numbers may not add up due to rounding. 
 

Table 1: 2003 Natural Gas Industry Statistics (All units in million cubic feet) (4) 
 

Gross Withdrawals 24,000,000
Total Dry Production 19,000,000
Total Supply 27,000,000
Total Consumption 22,500,000
Total Imports 4,000,000
Pipeline Imports 3,500,000
LNG Imports 505,000

 
 
Greenhouse gas emissions from Natural Gas produced in North America 
 
During the late 1980’s and early 1990’s the US Environmental Protection Agency (EPA) 
conducted a study to determine methane emissions from the natural gas industry. This 
very comprehensive study developed hundreds of activity and emissions factors from all 
the areas of the natural industry. These factors were developed using data collected from 
the different sectors of the industry as well as from data collected in field measurements. 
Table 2 presents the percentage of produced natural gas that is emitted to the atmosphere 



during the lifecycle according to the results of the previously described study, as well as 
the source of these emissions. 
 

Table 2: Methane Emissions from North American Gas Life Cycle as a Percentage 
of Natural Gas Produced (8). 

 

Lifecycle Segment Emission Sources 
Emissions as a 

Percentage of Gas 
Produced 

Pneumatic Devices 
Fugitive Emissions 
Underground Pipeline Leaks 
Blow and Purge 
Compressor 

Production 

Glycol Dehydrator 

0.38% 

Fugitive Emissions 
Compressor Processing 
Blow and Purge 

0.16% 

Fugitive Emissions 
Blow and Purge 
Pneumatic Devices 

Transmission and 
Storage 

Compressor 

0.53% 

Underground Pipeline Leaks 
Meter and Pressure Stations Distribution 
Costumer Meter 

0.35% 

 
Based on the statistics presented in Table 1, 26.5 billion cubic feet of natural gas were 
produced in North America in 2003. Using the percentages of natural gas emitted, an 
average heat content of 1,030 BTU/ft3, and the assumption that 100% of the natural gas 
lost is methane (density 19.23 gr/ ft3) which may result in a slight overestimate of 
emissions given that the real percentage of methane in natural gas varies between 94% 
and 98%; total methane emission were calculated to develop the emission factors shown 
in Figure 4. 
 
In addition to methane, carbon dioxide emissions are produced from the combustion of 
natural gas used during the lifecycle stages previously described. The Energy Information 
Administration maintains records of the amount of natural gas used during the 
production, processing, transmission, storage, and distribution of natural gas. This data 
for 2003 can be seen in Table 3. Assuming that 100% of this gas is methane, total carbon 
dioxide emissions were found using thermodynamic calculations. These emissions were 
then added to methane emissions to obtain the total emission factors shown in Figure 3. 
 



Table 3: Natural Gas Used During Natural Gas Life Cycle. (All units in million 
cubic feet) (4). 

 
Flared Gas 98,000
Lease Fuel 760,000
Pipeline and Distribution Use 665,000
Plant Fuel 365,000

 
In 1993 the Natural Gas STAR program was established by the EPA to reduce methane 
emissions from the natural gas industry. The program is a voluntary partnership with the 
goal of encouraging industries to adopt practices that increase efficiency and reduce 
emissions. Since 1993, 338 billion cubic feet of methane have been eliminated. In 2003, 
52,900 million cubic feet of methane emissions were eliminated, a 9% reduction over 
projected emissions for that year without improved practices (9). This data was used to 
develop a range of emission factors for the North American natural gas industry. Figure 2 
shows the total range of emission factors for the North American natural gas lifecycle. It 
can be seen that total lifecycle emission for natural gas produced in North America are 
approximately 140 lbs CO2/MMBTU, an amount dominated by combustion emissions for 
natural gas plants currently in operation in the US of an average 120 lbs CO2/MMBTU 
(10)  
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Figure 2: Carbon Dioxide Equivalent Emission Factors from North American Gas 
Lifecycle (All Units in lbs CO2/MMBTU). 

 
Greenhouse gas emissions from LNG lifecycle 
 
As shown in Figure 1, the addition of liquefied natural gas (LNG) into the North 
American gas system introduces three additional stages into the lifecycle of natural gas: 
liquefaction, tanker transport, and regasification. It is assumed that natural gas produced 
in other countries and imported to the US in the form of LNG produces the same 
emissions in the production, processing, transmission, and distribution stages of the 
lifecycle as if the natural gas were produced in North America. Additional emission 
factors needed to be developed for the three additional lifecycle stages of LNG. Tamura 
et-al (11) has reported emission factors for the liquefaction stage in the range of 1.32 to 
3,67 gr-C/MJ. Using these results, the emission factors for liquefaction were found in 
units of pounds of CO2 per million BTUs, as shown in Table 4. 
 

Table 4: Liquefaction Emission Factors. 

Emission Factors (lb CO2/MMBTU) Liquefaction Min Average Max 
CO2 from fuel combustion 11 12 13 
CO2 from flare combustion 0.00 0.77 1.5 
CH4 from vent 0.09 1.3 9.8 
CO2 in raw gas 0.09 4.0 6.6 

 
Emissions from tanker transport of LNG were calculated using Equation 1. 
 

EmissionFactor =
EF( ) 2 × roundup LNGx
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Equation 1: Tanker Emission Factor. 
 
Where EF is the tanker emission factor of 3,200 kg CO2/ ton of fuel consumed; 2 is the 
number of trips each tanker does for every load (one bringing the LNG and one going 
back empty); LNGx is the amount of natural gas (in cubic feet) brought from each 
country; TC is the tanker capacity in cubic feet of natural gas, assumed to be 120,000 
cubic meters of LNG (1 m3 LNG = 21,537 ft3 NG); Dx is the distance from each country 
to US LNG facilities; TS is the tanker speed of 14 Knots; FC is a fuel consumption of 41 
tons of fuel per day; and 24 is hours per day (12).  
 
Exporting countries, their distances to the LNG facilities at Lake Charles, LA and 
Everett, MA, and the 2003 US imports can be seen in Table 5.  



Table 5: LNG Exporting Countries in 2003 (4). 

Exporting 
Country 

Distance to Lake 
Charles Facility 
(nautical miles) 

Distance to Everett, 
MA Facility 

(nautical miles) 

2003 US Imports 
(million cubic feet 

NG) 
Algeria 5,000 3,300 53,000 

Australia 12,000 11,000 0 
Brunei 12,000 11,000 0 

Indonesia 12,000 11,000 0 
Malaysia 12,000 11,000 2,700 
Nigeria 6,100 5,000 50,000 
Oman 8,900 7,500 8,600 
Qatar 9,700 8,000 14,000 

Trinidad 2,200 2,000 380,000 
UAE 9,600 7,959 0 

Russia 9,600 11,000 0 
 
Emission factors for tanker transport from each country to both US facilities can be seen 
in Figure 3.  
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Figure 3: Tanker Emission Factors from Each Country 
 
Since most of the LNG in 2003 was brought from Trinidad, the weighted average 
emission factor calculated for trips from each country to the Everett, MA facility is 
considered to be the a lower bound. An upper bound was obtained by assuming that all 
LNG was brought from Indonesia to the Lake Charles facility, and an average was 
obtained assuming all LNG was brought from Oman to the Lake Charles, LA facility. 
These resulting numbers can be seen in Table 6. 
 



 

Table 6: Tanker Transport Emission Factors. 

Emission Factors (lb CO2/MMBTU) 
Min 1.8 

Average 5.7 
Max 7.3 

 
Regasification emissions were reported by Tamura et-al to be 0.1 gr C/ MJ (0.85 lb 
CO2/MMBTU) (11). Ruether et-al reports an emission factor of 1.6 gr CO2/MJ (3.75 lb 
CO2/MMBTU) for this stage of the LNG lifecycle by assuming that 3% of the gas is used 
to run the regasification equipment (13). These values were used as the lower and upper 
bounds of the range of emission from regasification of LNG. Total LNG lifecycle 
emissions are shown in Figure 4. They range between 154 and 184 lbs CO2/MMBTU 
 

 

Figure 4: LNG Lifecycle Emission Factors (All Units in lbs CO2/MMBTU). 

 

Coal Lifecycle and its Greenhouse Gas Emissions for Electricity Generation 
 
The coal lifecycle is conceptually simpler than the natural gas lifecycle, consisting of 
only three steps, as shown in Figure 5. 
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Figure 5: Coal Lifecycle. 
 
In the US, 67% of the coal produced is mined in surface mines, while the remaining 33% 
is extracted from underground mines (1). Mined coal is then processed to remove 
impurities. Coal is then transported from the mines to the consumers via rail (84%), barge 
(11%), and trucks (5%) (14). Emissions from these lifecycle steps were calculated using 
the EIO-LCA tool developed at Carnegie Mellon University. In order to use this tool, 
economic values for each step of the lifecycle were necessary. In 1997, the year for 
which the EIO-LCA tool has data, the price of coal was $18.14/ton (15). Moreover, the 
cost for rail transport, barge, and truck transport was $11.06/ton,  $3.2/ton, and $5.47/ton 
respectively (14). For a million tons of coal the following emission information was 
obtained using EIO-LCA. 
 

Table 7: EIO-LCA Emission Data for Coal Lifecycle (16). 

Sector Total GHG Emissions 
(MT CO2 Equiv) 

Mining 75,000 
Rail Transportation 36,000 

Water Transportation 3,700 
Truck Transportation 5,000 

 
Using a weighted average US coal heat content of 10,266 BTU/lb (17) and the data 
previously discussed, it was found that the average emission factor for coal mining and 
transport is 11 lb CO2/MMBTU.  
 
In 1999, the National Renewable Energy Lab published a report on lifecycle emissions 
for power generation from coal (18). Upstream coal emissions (including transportation) 
from underground mines are reported to be 15 lbs CO2/MMBTU, while upstream coal 
emissions from surface mines is 9.9 lbs CO2/MMBTU. As previously mentioned, 67% of 
coal is currently mines in surface mines, while 33% is mined in underground mines (1). 
Using this information, the current coal upstream emissions average 12 lbs 
CO2/MMBTU, which is very close to the emission factor obtained using EIO-LCA. In 
the future, the distribution of US mines could change, affecting the average emission 
factor. For this reason, the range of coal upstream emissions from underground and 
surface mines described above is used for this paper. Moreover, the average emission 
factors for coal combustion at utility plants used is 205 lb CO2/MMBTU (10). 
 
 
Comparing Natural Gas and Coal Lifecycle Emissions 
 
Emissions factors for the natural gas lifecycle and the coal lifecycle were previously 
reported in pounds of CO2 per MMBTU of fuel. Coal and natural gas power plants have 



different efficiencies; thus one million BTU of coal does not generate the same amount of 
electricity as one million BTU of natural gas. For this reason, emission factors must be 
converted to units of pounds of CO2 per kWh of electricity generated. This conversion 
was done using the heat rates of natural gas and coal plants. Figure 6 shows the 
distribution of these heat rates, and Figure 7 shows the resulting emission factor 
distribution for coal and natural gas. These distributions were obtained using the 
cumulative distribution function of EIA electricity generation data for all utility plants in 
2003 (7). The minimum value represents the heat rate at which 5% of the electricity 
generated with the specific fuel is seen. Similarly the mean and maximum values are the 
heat rates at which 50% and 95% of the electricity has been generated with each fuel. As 
seen in Figure 6, the average heat rate for natural gas plants is lower than the average heat 
rate for coal plants, however the upper range of heat rates for natural gas plants surpasses 
the heat rates for coal plants. 
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Figure 6: Natural Gas and Coal Plant Heat Rates (7). 
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Figure 7: Emission Factors for Coal and Natural Gas Lifecycles. 

 
Note that the average emission factor for coal combustion is higher than the emission 
factor for natural gas combustion. This does not change too much when the whole 
lifecycle is considered. More important seems to be the effect that including upstream 
emissions have in the range of emission factors for natural gas. While the average 
emission factor for the total coal lifecycle only increases by 5% compared to combustion 
emissions, the average emission factor for a natural gas mix with 20% LNG is 21% 
higher than the combustion emissions. Moreover, the maximum emission factor of the 
natural gas lifecycle gets closer to the minimum coal lifecycle emission factor. These 
results imply that if emissions at the combustion stage of the lifecycle could be 
controlled, natural gas would not be a much better alternative to coal in terms of 
greenhouse gas emissions.  
 
New Generation Capacity 
 
According to the DOE, by 2025 43 GW of inefficient gas and oil fired facilities will be 
retired, while 281 GW of new capacity will be installed (3). IGGC and NGCC power 
plants will probably be installed. These plants are generally more efficient than current 
technologies (average HHV Efficiencies are 37.5% and 50.2% respectively) (19) and thus 
have lower carbon emissions at the combustion stage. In addition, carbon capture and 
sequestration (CCS) can be performed more easily with these newer technologies. CCS is 
a process by which carbon emissions at the power plant are separated from other 
combustion products, captured and injected into underground geologic formations such 
as saline formations and depleted oil/gas fields. Experts believe that 90% CCS will be 



technologically and economically feasible in the future. Having CCS at IGCC and NGCC 
plants decreases the efficiency of the plants to average HHV efficiencies of 32.4% and 
42.8% respectively (19) but overall lifecycle emissions would be greatly reduced and 
would be essentially the same for coal and natural gas (with 20% LNG). However, the 
major contributor for coal emissions would be at the combustion stage, while for natural 
gas the majority of the emissions would come from upstream processes. Figure 8, shows 
total emissions with CCS for IGCC and NGCC plants using average upstream emission 
factors of 11.6 lbs CO2 Equiv/MMBTU and 25.6 lbs CO2 Equiv/MMBTU for coal and 
natural gas respectively 

 

Figure 8: Lifecycle Emission Factors for IGCC and NGCC plants w/ CCS. 
 
Discussion 
 
It has been shown that there is high uncertainty about overall lifecycle carbon emissions 
for coal and LNG. In the future, as newer generation technologies and CCS are installed, 
overall emissions from electricity generated with coal and electricity generated with 
natural gas could be surprisingly similar. There is push right now from power generator 
to increase import of LNG. They seem to hope that the price of natural gas will decrease 
with these imports and they will be able to recover the investment they made in natural 
gas plants that are currently producing under capacity. These investments should be 
considered sunk costs and it is important to revaluate whether investing billions of dollars 
in LNG infrastructure will lead us into an energy path that cannot be easily changed as it 
will be harder to consider these investments as sunk costs once the expected 
environmental benefits are not achieved.  
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The analysis presented here only includes carbon emission, and no consideration was 
given to issues like energy security. Increasingly, LNG will come from areas of the world 
that are politically unstable. Policymakers should evaluate this increased dependence on 
foreign fuel before making decisions about future energy investments. In addition, the 
analysis presented only considers the use of natural gas for electricity generation. Natural 
gas is an indispensable fuel for many sectors of the US economy. As demand for natural 
gas from the electric utilities increases, these other sectors will probably be affected by 
higher natural gas prices. It is important to analyze whether these other sectors constitute 
a better use for natural gas than electricity generation, which has alternative fuels at its 
disposal. 
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Summary of Key Points: 

Liquefied natural gas (LNG) exports present both opportunities and risks. Producing and 

delivering natural gas to customers is highly energy- and emissions-intensive, particularly when 

LNG is involved. Research by the World Resources Institute has found that cuts in upstream 

methane leakage from natural gas systems are among the most important steps the U.S. can take 

toward meeting our greenhouse gas (GHG) emissions reduction goals by 2020 and beyond.  

This testimony focuses on fugitive methane emissions and the many cost-effective solutions 

available for reducing them.  It appears very likely that LNG exports from U.S. terminals would 

result in increased domestic GHG emissions from both upstream and downstream sources.  

Policymakers should more actively work to help achieve reductions in GHG emissions from 

throughout the natural gas value chain, if this valuable fuel and LNG are to be part of the 

solution to the climate change problem. Taking these actions offer economic, environmental, and 

geopolitical benefits, both in the U.S. and internationally.  To this end, I offer the following 

policy recommendations: 

 Expand applied technology research programs at the U.S. Department of Energy to help 

reduce the cost of leak-detection and emissions measurement technologies, and to 

develop new and lower-cost emission reduction strategies.  

 Update emissions factors for natural gas systems using robust measurement protocols, 

public reporting by industry, and independent verification. 

 Authorize and appropriate funding for the organization STRONGER (State Review of 

Oil and Natural Gas Environmental Regulations) to help states with timely development 

and evaluation of their environmental regulations. 

 Support voluntary programs at the U.S. Environmental Protection Agency (EPA), 

including Natural Gas STAR and other programs which recognize companies that 

demonstrate a commitment to best practices. 

 Support EPA’s efforts to provide technical and regulatory assistance to states with 

expanding oil and natural gas development, including through the Ozone Advance 

Program.  

 Enact policies to support clean energy and address climate change. A clean energy 

standard or putting a price on carbon would provide clear signals to energy markets that 

energy providers and users need to recognize the environmental and social costs as well 

as the direct economic costs of energy resources.  
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Good morning, and thank you for the opportunity to contribute to the deliberations of this 

Subcommittee. My name is James Bradbury, and I am a senior associate in the Climate and 

Energy Program at the World Resources Institute (WRI). WRI is a non-profit, non-partisan think 

tank that focuses on the intersection of the environment and socio-economic development. We 

go beyond research to put ideas into action, working globally with governments, business, and 

civil society to build transformative solutions that protect the earth and improve people’s lives. 

We operate globally because today’s problems know no boundaries. We provide innovative 

paths to a sustainable planet through work that is accurate, fair, and independent. 

Summary 

I am pleased to be here today to offer WRI’s perspective on the climate implications of U.S. 

liquefied natural gas (LNG) exports. I encourage this committee to weigh a complete 

consideration of the associated economic and geopolitical opportunities next to the potential 

risks, neither of which have been fully considered in the public debate. In particular, it appears 

very likely that LNG exports from U.S. terminals would result in increased domestic greenhouse 



 

2 
 

gas (GHG) emissions. For example, analysis by the Energy Information Administration (EIA)
1
 

concluded that any scenario of LNG exports would trigger an increase in domestic carbon 

dioxide (CO2) emissions, due to an increase in coal-fired electricity and use of natural gas for the 

energy-intensive liquefaction process at LNG terminals. The EIA also projected an increase in 

natural gas production from shale wells. Though not considered in the EIA study, an inevitable 

consequence would be greater upstream air emissions from natural gas infrastructure – that is, 

emissions that occur prior to fuel combustion – including fugitive methane, which is a potent 

global warming pollutant. While LNG exports from the U.S. are widely expected to marginally 

reduce global CO2 emissions, modeling to date suggests that the scale of these reductions is less 

than ten percent of the total levels of global fugitive methane emissions from natural gas and oil 

systems. 

 

These facts should raise the bar for policymakers and advocates for LNG exports to more 

actively work to achieve continuous improvement in GHG emissions from all life cycle stages 

(from extraction to use), if natural gas and LNG are to be part of the solution to our climate 

change problem. Furthermore, to the extent that substantial LNG exports from the U.S. move 

forward, our national policy objectives should be broader than simply improving our balance of 

trade vis-à-vis fossil fuel exports to increase our economic and geopolitical standing. We also 

have an important – indeed urgent – opportunity to improve our economic and geopolitical 

standing by showing leadership in addressing global climate change. We can do through policies 

                                                           
1
 See: http://www.fossil.energy.gov/programs/gasregulation/reports/fe_eia_lng.pdf  

http://www.fossil.energy.gov/programs/gasregulation/reports/fe_eia_lng.pdf
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that promote the development, deployment, and export of low-carbon products and services
2
 to 

help enable global GHG emissions reductions from all sectors, including through technologies 

and practices that allow the cleaner production and more efficient end-use of natural gas.  

 

Today I will focus in particular on fugitive methane emissions
3
 and the cost-effective solutions 

available for reducing them.
4
 The case for policy action is particularly strong considering that 

recent research shows that climate change is happening faster than expected. In addition, the 

projected expansion in domestic oil and natural gas production increases the risk of higher GHG 

emissions if proper protections are not in place. 

 Methane is the primary component of natural gas and also a potent greenhouse gas. 

Methane leaked from natural gas systems (i.e., fugitive methane) represent lost product 

and reduced revenue for companies and governments, with negative consequences for air 

quality and the environment. 

 Fugitive methane emissions from natural gas systems represent roughly 3 percent of 

global warming pollution in the U.S. Reductions in methane emissions are urgently 

needed as part of the broader effort to slow the rate of global temperature rise.  

 Although natural gas burns much cleaner than coal or oil, fugitive methane emissions 

significantly reduce this relative advantage, from a climate standpoint; therefore, cutting 

                                                           
2
 For more information on low-carbon market opportunities, see Jennifer Morgan’s testimony, here: 

http://www.wri.org/publication/testimony-american-energy-security-and-innovation-assessment-of-energy-
resources  
3
 While this testimony focuses on greenhouse gas emissions – and methane emissions from natural gas systems, in 

particular – WRI is committed to minimizing the full scope of impacts cause by energy production and use.  It is 
critical for U.S. energy policies to be developed with consideration to a broad range of risks and benefits. 
4
 For more detailed analysis and discussion of this topic, see WRI’s recent working paper, “Clearing the Air: 

Reducing Upstream Greenhouse Gas Emissions from U.S. Natural Gas Systems.” Available at: 
http://www.wri.org/publication/clearing-the-air 

http://www.wri.org/publication/testimony-american-energy-security-and-innovation-assessment-of-energy-resources
http://www.wri.org/publication/testimony-american-energy-security-and-innovation-assessment-of-energy-resources
http://www.wri.org/publication/clearing-the-air
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fugitive emissions from natural gas systems would ensure that the climate impacts of 

natural gas are much lower than coal or diesel fuel over any time horizon.  

 Recent emissions standards from the U.S. Environmental Protection Agency (EPA) will 

substantially reduce leakage from natural gas systems, but to help slow the rate of global 

warming pollution and improve air quality, further action by states and federal agencies 

should directly address fugitive methane from new and existing wells and equipment.  

 Fortunately, most strategies for reducing fugitive methane emissions are cost-effective, 

with payback periods of three years or less. A recent WRI report found that cuts in 

methane leakage from natural gas systems are among the most important steps the U.S. 

can take toward meeting our GHG emissions reduction goals.
5
  

 The process of liquefaction, transport, and regasification of LNG is highly emissions-

intensive, increasing by 15 percent the total life cycle GHG emissions associated with 

exported U.S. natural gas, compared to natural gas that is produced and consumed 

domestically. These added upstream emissions also significantly reduce the relative 

advantage that natural gas would have over higher-emitting fuels, like coal and oil. 

 The following policy actions by Congress would help reduce methane emissions as cost-

effectively and quickly as possible:  

o Expand applied technology research programs at the U.S. Department of Energy 

(DOE) to help reduce the cost of leak-detection and emissions measurement 

technologies, and to develop new and lower-cost emission reduction strategies.  

                                                           
5
 See: “Can the U.S. Get There from Here? Using Existing Federal Laws and State Actions to Reduce Greenhouse 

Gas Emissions,” available at: http://www.wri.org/publication/can-us-get-there-from-here.  

http://www.wri.org/publication/can-us-get-there-from-here
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o Update emissions factors for natural gas systems using robust measurement 

protocols, public reporting by industry, and independent verification. 

o Authorize and appropriate funding for the organization STRONGER (State 

Review of Oil and Natural Gas Environmental Regulations) to help states with 

timely development and evaluation of their environmental regulations. 

o Support voluntary programs at EPA, including Natural Gas STAR and other 

programs which recognize companies that demonstrate a commitment to best 

practices. 

o Support EPA’s efforts to provide technical and regulatory assistance to states with 

expanding oil and natural gas development, including through the Ozone Advance 

Program.  

 Broader action on policies supporting clean energy and addressing climate change should 

also be on the table. A clean energy standard or putting a price on carbon would provide 

clear signals to energy markets that energy providers and users need to recognize the 

environmental and social costs as well as the direct economic costs of energy resources.  

 

Finally, every day that we take no policy action on climate change, we make the policy choice to 

let climate change run its course. This ignores the overwhelming consensus of climate scientists 

who have been warning for decades that rising GHG emissions will cause the planet to warm, 

sea levels to rise, and weather to become more extreme. It is indisputable that these climate 

changes are happening today, in many cases much more quickly than expected. Action is 

urgently needed. 
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LNG Exports, the Public Interest, and Climate Change  

When reviewing grant applications for LNG export authorizations, DOE is required to determine 

if proposed exports “will not be consistent with the public interest." In making this finding, DOE 

is considering a range of factors, including economic, energy security, and environmental 

impacts.
6
 The climate change implications of LNG exports touches on each of these factors and 

therefore deserves more careful consideration by Congress and DOE.  

The January 2012 study by EIA included a useful but limited assessment of the climate change 

implications of LNG exports, while the NERA Economic Consulting report (December 2012) 

was more narrowly focused on macroeconomic considerations.
7
 This testimony focuses 

particular attention to how LNG exports – and increased production of natural gas more broadly 

– could affect domestic and international GHG emissions, which is clearly a question of 

relevance to the public interest.  

 

There is no doubt that our climate is already changing in ways that are increasingly risky, 

difficult to manage, and harmful to public health and the environment.
8
 Recent science 

assessments – including by the U.S. National Academy of Sciences and the U.S. Global Change 

Research Program
9
 – agree that GHG emissions are very likely causing higher global 

temperatures, rising sea levels, and more frequent extreme weather events. National science 

                                                           
6
 See: http://www.fossil.energy.gov/programs/gasregulation/LNGStudy.html  

7
 Both reports are available here: http://www.fossil.energy.gov/programs/gasregulation/LNGStudy.html  

8
 National Academies, Committee on Climate Choices, Final Report, 2011. http://dels.nas.edu/Report/America-

Climate-Choices-2011/12781  
9
 http://ncadac.globalchange.gov/download/NCAJan11-2013-publicreviewdraft-fulldraft.pdf  

http://www.fossil.energy.gov/programs/gasregulation/LNGStudy.html
http://www.fossil.energy.gov/programs/gasregulation/LNGStudy.html
http://dels.nas.edu/Report/America-Climate-Choices-2011/12781
http://dels.nas.edu/Report/America-Climate-Choices-2011/12781
http://ncadac.globalchange.gov/download/NCAJan11-2013-publicreviewdraft-fulldraft.pdf
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academies from over a dozen countries, including the U.S., have expressly urged governments to 

take urgent action to curb these harmful emissions.
10

 

 

The current U.S. commitment to the international community is to reduce GHG emissions below 

2005 levels by 17 percent in 2020 and 83 percent in 2050.
11

 While a shift in electric generation 

to natural gas from coal has played a significant role in recent reductions in U.S. carbon dioxide 

emissions, this market-driven trend in the power sector has reversed somewhat in recent months, 

as natural gas prices have been increasing.
12

 Furthermore, GHG emissions from all major 

sources will need to be addressed for the U.S. to help achieve climate stabilization at 2° Celsius, 

which the international community has agreed to be an appropriate and relatively safe target. A 

recent report by the World Bank
13

 found that the world is on track for at least a 4° Celsius 

increase in global temperatures, which would be extremely damaging to global development 

goals and be “marked by extreme heat-waves, declining global food stocks, loss of ecosystems 

and biodiversity, and life-threatening sea level rise.” However, the World Bank also concluded 

that there is still time to enact policies that would help avoid this outcome.  

 

 

 

 

                                                           
10

 G8+5 Academies’ joint statement: Climate change and the transformation of energy technologies for a low 
carbon future. http://www.nationalacademies.org/includes/G8+5energy-climate09.pdf  
11

 See: 
http://unfccc.int/files/meetings/cop_15/copenhagen_accord/application/pdf/unitedstatescphaccord_app.1.pdf   
12

 See: http://insights.wri.org/news/2013/03/new-data-reveals-rising-coal-use  
13

 See: http://climatechange.worldbank.org/content/climate-change-report-warns-dramatically-warmer-world-
century 

http://www.nationalacademies.org/includes/G8+5energy-climate09.pdf
http://unfccc.int/files/meetings/cop_15/copenhagen_accord/application/pdf/unitedstatescphaccord_app.1.pdf
http://insights.wri.org/news/2013/03/new-data-reveals-rising-coal-use


 

8 
 

Concerns about the environmental impacts of shale gas development 

Natural gas production in the United States has increased rapidly in recent years, growing by 23 

percent from 2007 to 2012.
14

 This development has significantly changed projections of the 

future energy mix in the U.S. The shale gas phenomenon has also helped reduce energy prices, 

directly and indirectly supporting growth for many sectors of the U.S. economy, including 

manufacturing. The EIA projects that the United States will begin exporting LNG within 5 years 

and that the country will be a net natural gas exporter by the year 2020.
15

 

 

Shale gas development has also triggered divisive debates over the near- and long-term 

environmental implications of developing and using these resources, including concerns about 

water resources, air quality, and land and community impacts.
16

 Like all forms of energy, 

including conventional natural gas, there are public health and environmental risks associated 

with shale gas development. Chief among public concerns are drinking water contamination 

resulting from improper wastewater management, chemical spills, and underground methane 

migration into groundwater. There are also concerns regarding air emissions, and land-related 

impacts including habitat fragmentation and soil erosion. Other common concerns involve 

community impacts related to industrial development and extensive truck traffic. In 2011, the 

Secretary of Energy Advisory Board’s Natural Gas Subcommittee warned
17

 that “disciplined 

attention must be devoted to reducing the environmental impact” of shale gas development in the 

                                                           
14

 See: http://www.eia.gov/forecasts/aeo/index.cfm  
15

 ibid  
16

 For more detailed discussions of the broader environmental impacts of natural gas development, see: 
http://www.gao.gov/products/GAO-12-732; and http://www.rff.org/Documents/RFF-Rpt-
PathwaystoDialogue_FullReport.pdf  
17

 http://www.shalegas.energy.gov/resources/111811_final_report.pdf  

http://www.eia.gov/forecasts/aeo/index.cfm
http://www.gao.gov/products/GAO-12-732
http://www.rff.org/Documents/RFF-Rpt-PathwaystoDialogue_FullReport.pdf
http://www.rff.org/Documents/RFF-Rpt-PathwaystoDialogue_FullReport.pdf
http://www.shalegas.energy.gov/resources/111811_final_report.pdf
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face of its expected continued rapid growth, with as many as 100,000 more wells expected over 

the next few decades. 

 

Of particular concern are the air emissions and climate change implications of shale gas 

development, including fugitive methane emissions, which reduce the net climate benefits of 

using lower-carbon natural gas as a substitute for coal and oil for electricity generation and 

transportation, respectively. Other air emissions from the natural gas sector include CO2, volatile 

organic compounds (VOCs, which are chemicals that contribute to ground-level ozone and 

smog), and hazardous air pollutants (HAPs). In 2012, EPA finalized air pollution standards for 

VOCs and HAPs from the oil and natural gas sector. These rules will improve air quality and 

have the co-benefit of reducing methane emissions. As discussed below (see p. 18, “Progress is 

Being Made but There is More Work to Be Done”), these standards should be complemented by 

additional actions to further reduce methane emissions, which will help slow the rate of global 

temperature rise in the coming decades.  

 

From the standpoint of CO2 emissions, shale gas development and lower natural gas prices have 

contributed to recent emissions reductions in the U.S. However, GHG emissions are projected to 

rise, and market forces and voluntary actions alone will not enable an effective response to 

climate change. Thus broad policy action will be needed. For example, analysis by the 

International Energy Agency (IEA)
18

 found that a significant global increase in use of natural gas 

over the coming decades could have some net climate benefits compared to scenarios in which 

oil and coal play more prominent roles. However, the IEA’s “Golden Rules Case” scenario 

                                                           
18

 International Energy Agency, “Golden Rules for a Golden Age of Gas.” Available at: 
http://www.worldenergyoutlook.org/media/weowebsite/2012/goldenrules/weo2012_goldenrulesreport.pdf  
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would result in CO2 concentrations in the atmosphere of 650 parts per million (ppm) and a global 

temperature rise of 3.5° Celsius, almost twice the internationally accepted 2° Celsius target. 

Economic modeling conducted by researchers at MIT
19

 and Resources for the Future
20

 have also 

found that while greater use of natural gas may offer some climate benefits, climate and energy 

policies will be needed to reduce CO2 emissions by anywhere near our 83 percent target by mid-

century.  While natural gas will likely play an essential bridging role in this transition, this will 

require both reducing the upstream GHGs produced during the extraction process, and ─ if gas-

fired power plants are to be a part of a longer-term energy future ─ using carbon capture and 

storage (CCS) technology. 

 

Why Focus on Methane Emissions?  

Though methane accounted for only 10 percent of the U.S. greenhouse gas emissions inventory 

in 2010 (Figure 1),
21

 it represents one of the most important opportunities for reducing GHG 

emissions in the U.S.
22

 In addition to the scale and cost-effectiveness of the reduction 

opportunities, climate research scientists have concluded that cutting methane emissions in the 

near term could slow the rate of global temperature rise over the next several decades.
23

  

 

                                                           
19

 See: http://globalchange.mit.edu/research/publications/2229  
20

 See: http://www.rff.org/RFF/Documents/RFF-IB-09-11.pdf 
21

 Note: all GHG inventory numbers referred to in this testimony were adjusted to reflect a more current global 
warming potential (GWP) for methane of 25 (IPCC 2007). This is necessary because when EPA converts methane to 
carbon dioxide equivalents they use an out-of-date GWP for methane of 21 (IPCC 1995), for the sake of 
consistency with UNFCCC reporting guidelines.  
22

 See: “Can the U.S. Get There from Here? Using Existing Federal Laws and State Actions to Reduce Greenhouse 
Gas Emissions,” available at: http://www.wri.org/publication/can-us-get-there-from-here. 
23

 National Research Council, 2011. “Climate Stabilization Targets: Emissions, Concentrations, and Impacts over 
Decades to Millennia,” ISBN: 0-309-15177-5, 298 pages. http://www.nap.edu/catalog/12877.html  

http://globalchange.mit.edu/research/publications/2229
http://www.wri.org/publication/can-us-get-there-from-here
http://www.nap.edu/catalog/12877.html
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Rising methane concentrations in the atmosphere have a potent, near-term warming effect 

because this greenhouse gas has a relatively high global warming potential and short atmospheric 

lifetime (IPCC 2007). Global warming potential (GWP) is a measure of the total energy that a 

gas absorbs over a particular period of time (usually 100 years), compared to carbon dioxide. 

Key factors affecting the GWP of any given gas include its average atmospheric lifetime and the 

ability of that molecule to trap heat. By mass, the same amount of methane emissions is 25 times 

more potent than carbon dioxide emissions over a 100-year time horizon (IPCC 2007). In the 20-

year time frame, studies estimate that methane’s GWP is at least 72 times greater than that of 

carbon dioxide. 

 

Scientists at the National Research Council of the U.S. National Academy of Sciences have 

concluded that global CO2 emissions need to be reduced in the coming decades by at least 80 

percent to stabilize atmospheric CO2 concentrations and thereby avoid the worst impacts of 

global climate change.
24

 However, given the slow pace of progress in the U.S. in this regard, it is 

valuable and important for policymakers to consider cost-effective mitigation strategies – such as 

cutting methane emissions – that would have a disproportionate short-term impact. 

 

How Emissions-Intensive is U.S. Natural Gas? 

EPA estimates that total emissions from the development, transmission, and use of natural gas in 

the U.S. made up roughly a quarter of the total U.S. GHG inventory in 2011.
25

 While natural gas 

emits about half as much carbon dioxide as coal at the point of combustion, the picture is more 

                                                           
24

 Ibid.  
25

 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011 (April 2013). 
http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html  

http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html
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complicated from a life cycle perspective. Three percent of the U.S. inventory is the result of 

fugitive methane emissions from natural gas systems
26

 – i.e., natural gas lost to the atmosphere 

through venting and systemic leaks, prior to the point of combustion. To put this in perspective, 

in 2011, these methane leaks resulted in more GHG emissions
27

 than all of the direct and indirect 

GHG emissions from U.S. iron and steel, cement, and aluminum manufacturing combined.
28

 

 

EPA’s 2013 GHG inventory implies a methane leakage rate of less than 2 percent of total natural 

gas production. Meanwhile, recent research
29

 has shown that at less than a 3 percent leakage rate, 

natural gas produces fewer GHG emissions than coal over any time horizon. Additionally, 

reducing the methane leakage rate to below 1 percent would ensure that heavy-duty vehicles 

fueled by natural gas, like buses and long-haul trucks, would provide an immediate climate 

benefit over similar vehicles fueled by diesel. Thus, reducing total methane leakage to less than 1 

percent of natural gas production is a sensible performance standard for the sector; an achievable 

benchmark that has not yet been reached. 

 

Accurate estimates of the total leakage rate from the natural gas sector require reliable data for a 

broad range of industry activities and emissions factors associated with those activities. While 

EPA has recently updated industry activity data, most of the emissions factors rely on assumed 

emissions factors – as opposed to direct measurements, which are generally rare and often 

                                                           
26

 The GHG inventory estimates 6.9 million metric tons of fugitive methane from natural gas systems in 2011. 
27

 This estimate is based on an assumed global warming potential for methane of 25, which is the convention when 

considering the climate implications of methane compared to carbon dioxide, integrated over a 100-year time 
frame (IPCC, 2007). 
28

 See: 
http://www.energetics.com/resourcecenter/products/roadmaps/Pages/USManufacturingEnergyUseandGreenhou
seGasEmissionsAnalysis.aspx  
29

 See: http:// www.pnas.org/content/109/17/6435  

http://www.energetics.com/resourcecenter/products/roadmaps/Pages/USManufacturingEnergyUseandGreenhouseGasEmissionsAnalysis.aspx
http://www.energetics.com/resourcecenter/products/roadmaps/Pages/USManufacturingEnergyUseandGreenhouseGasEmissionsAnalysis.aspx
http://www.pnas.org/content/109/17/6435
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outdated. Some recently published research suggests that emissions levels may be higher than 

EPA estimates; this, coupled with high ground-level ozone levels in Colorado and Texas and 

rural parts of Utah and Wyoming (i.e., smog that is attributed to shale gas production activities), 

suggests that the emissions problem may be worse than we think, and certainly subject to 

regional variations.
30

  

 

With hundreds of thousands of wells and thousands of natural gas producers operating in the 

U.S., the data quality issue will likely remain an active debate, even as forthcoming data from 

EPA and other sources in the coming months aims to clarify these questions.
31

 In its November 

2011 final report, the Secretary of Energy Advisory Board recommended that natural gas 

companies measure and disclose air emissions from shale wells.
32

 Indeed, what remains lacking 

is a valid system for direct measurement and independent verification of emissions data reported 

by this sector.
33

 

 

Nevertheless, while uncertainties remain regarding exact methane leakage rates, the weight of 

evidence suggests that significant leakage occurs during every life cycle stage of U.S. natural gas 

systems and much more can be done to reduce these emissions cost-effectively. A recent expert 

                                                           
30

 Recent research based on field measurements of ambient air near natural gas well-fields in Colorado and Utah 

suggest that more than 4 percent of well production may be leaking into the atmosphere at some production-stage 

operations. For more discussion of questions regarding the quality and availability of methane emissions data, see 

Appendix 3 of “Clearing the Air,” here: http://www.wri.org/publication/clearing-the-air.  
31

 For example, independent researchers at the University of Texas at Austin are teaming up with the Environmental 

Defense Fund and several industry partners to directly measure methane emissions from several key sources. When 

results are published in 2013 and 2014, these data will provide valuable points of reference to help inform this 

important discussion. 
32

 See: http://www.shalegas.energy.gov/  
33

 Such systems and protocols have been developed for tracking emissions from other sources. For example, see: 
http://www.epa.gov/etv/vt-ams.html  

http://www.wri.org/publication/clearing-the-air
http://www.shalegas.energy.gov/
http://www.epa.gov/etv/vt-ams.html
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survey by Resources for the Future
34

 identified methane emissions as a “consensus environmen-

tal risk” that should be addressed through government and industry actions.  

 

How Will LNG Exports Affect Greenhouse Gas Emissions? 

To the extent that it is displacing higher-carbon fuels such as coal and oil, natural gas has the 

potential to help reduce total greenhouse gas emissions. This is particularly true as long as 

upstream emissions associated with natural gas are minimized and ideally methane leakage is 

kept below 1 percent of total production, as discussed above.  

 

That said, the potential for LNG exports raises three primary concerns from a climate 

perspective.  

1) The first area of concern involves upstream GHG emissions associated with increased 

onshore natural gas production. EIA projects that LNG exports would result in increased 

domestic production of natural gas, with roughly three quarters of this from shale 

sources. As shown in Figure 1, there are significant upstream GHG emissions (both CO2 

and methane) associated with shale gas production in the U.S. Given continued 

uncertainty around the actual level of methane emissions over the lifetime of both 

conventional and unconventional gas wells,
35

 this projected market response could result 

in substantially higher levels of GHG emissions from throughout U.S. natural gas 

systems. The good news is that there are many ways to cost-effectively reduce upstream 

methane emissions; we encourage government and industry to do more to realize this 

                                                           
34

 See: http://www.rff.org/Documents/RFF-Rpt-PathwaystoDialogue_FullReport.pdf  
35

 Most studies estimate that upstream GHG emissions from conventional and unconventional gas sources are 
roughly comparable, within the margin of error. 

http://www.rff.org/Documents/RFF-Rpt-PathwaystoDialogue_FullReport.pdf


 

15 
 

opportunity (see p. 20 below, “Further Potential to Reduce Fugitive Methane 

Emissions”). 

Figure 1: Estimated Life Cycle Greenhouse Gas Emissions from U.S. Shale Gas, LNG Exports, and Coal 

 

2) The second area of concern is with respect to the liquefaction, transport, and 

regasification of LNG exports. According to a 2012 Natural Gas Technology Assessment 

by the National Energy Technology Lab (NETL),
36

 these energy- and emissions-intensive 

processes would add roughly 15 percent
37

 to total life cycle GHG emissions associated 

with U.S. onshore natural gas production (see Figure 1, above, “LNG upstream”). These 

added upstream emissions significantly reduce the relative advantage that natural gas 

                                                           
36

 NETL (National Energy Technology Laboratory). 2012. Role of Alternative Energy Sources: Natural Gas 
Technology Assessment. National Energy Technology Laboratory, U.S. Department of Energy. Available at: 
http://www.netl.doe.gov/energy-analyses/refshelf/PubDetails.aspx?Action=View&PubId=435  
37

 Based on data provided in Appendix B of the NETL (2012) report, we calculate 11.5 grams of CO2 equivalent per 
megajoule (g CO2e/MJ) of natural gas exported, which we added to estimated life cycle emissions associated with 
shale gas production, after the recent EPA rule takes effect (8.25 g CO2e/MJ), and typical estimate of final 
combustion of natural gas (56 g CO2e/MJ).  

http://www.netl.doe.gov/energy-analyses/refshelf/PubDetails.aspx?Action=View&PubId=435
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would have over higher-emitting fuels like coal.
38

 The chart below illustrates the relative 

contributions of each process to total GHGs associated with LNG exports; liquefaction is 

the most emissions-intensive process, followed by regasification and transport. It is also 

worth noting that natural gas liquefaction emissions would occur at domestic LNG 

terminals, adding to total U.S. GHG emissions. 

Figure 2: Life Cycle GHG Emissions from LNG Terminals, Transport, and Infrastructure 

 

3) The third area of concern is the indirect domestic and international energy market 

implications of U.S. LNG exports. EIA’s 2012 report to DOE found that LNG exports 

would raise domestic prices for natural gas, making natural gas relatively less 

competitive compared to other energy sources in the U.S., resulting in greater use of coal 

                                                           
38

 Note that the data presented in Figure 1 show life cycle emissions estimates for the domestic production of 
natural gas and coal, with upstream LNG numbers assuming LNG exported from Trinidad and Tobago and imported 
in Louisiana. Ideally, this figure would offer a direct comparison between life cycle emissions from domestic shale 
gas production and export versus coal or fuel oil in the country of import. However, such data are not readily 
available at this time. 
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and higher levels of GHG emissions under all LNG export scenarios.
39

 The global GHG 

implications of LNG exports from the U.S. is harder to assess, but the basic picture is that 

more gas would be sold into international markets, which would help reduce carbon 

dioxide emissions as long as it displaced higher-carbon fuel sources. Given the extensive 

scale of planned coal-fired power plants around the world
40

 and accounting for the 

prevalence of energy-efficient technologies available for natural gas combustion,
41

 this is 

a reasonable assumption. On the other hand, a greater abundance of lower-priced natural 

gas in global energy markets (supported by U.S. LNG exports) is also expected to 

increase total energy use and displace some lower-carbon renewable and nuclear energy 

sources, which will increase GHG emissions in markets where lower-carbon technologies 

have become relatively cost-effective. Taking all of these factors into consideration, IEA 

projections
42, 43

 find that greater supplies of natural gas would lead to net annual 

reductions in global CO2 emissions of 0.5 percent by 2035.
44

 The report concludes that 

“while a greater role for natural gas in the global energy mix does bring environmental 

benefits where it substitutes for other fossil fuels, natural gas cannot on its own provide 

the answer to the challenge of climate change.” 

                                                           
39

 The EIA estimates increases in U.S. CO2 emissions between 9 and 75 MMt per year, from 2015 to 2035. 
40

 See: http://www.wri.org/publication/global-coal-risk-assessment 
41

 See: http://www.c2es.org/technology/factsheet/natural-gas 
42

 See: http://www.worldenergyoutlook.org/goldenageofgas/ 
43

 See: http://www.worldenergyoutlook.org/media/weowebsite/2011/WEO2011_GoldenAgeofGasReport.pdf  
44

 In their 2011 special report on natural gas, the IEA estimated that the GAS Scenario would lead to 35.3 
gigatonnes (Gt) energy-related CO2 emissions in 2035, with annual reduction of 160 million metric tons (MMt), in 
that year (compared to their “New Policies Scenario”).  In their 2012 special report, the IEA reached a similar 
conclusion, estimating 184 MMt of annual reductions in global energy-related CO2 emissions in 2035 with their 
“Golden Rules Case” (compared to a baseline), with global emissions rising to 36.8 gigatonnes (Gt) in the same 
year.  

http://www.worldenergyoutlook.org/goldenageofgas/
http://www.worldenergyoutlook.org/media/weowebsite/2011/WEO2011_GoldenAgeofGasReport.pdf
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In summary, available evidence suggests that LNG exports from the U.S. would marginally 

reduce global CO2 emissions, although the scale of these estimated GHG emissions savings is an 

order of magnitude lower than the total projected levels of global methane emissions from 

natural gas and oil systems.
45

 Meanwhile, it appears very likely that LNG exports from U.S. 

terminals would result in increased domestic GHG emissions from both upstream and 

downstream sources.  

 

These expected outcomes should raise the bar for policymakers and industry to more actively 

work to achieve continuous improvement in GHG emissions from all life cycle stages of natural 

gas development and use. Our research shows that reducing fugitive methane can be highly cost-

effective – beneficial to customers and companies alike – and it is necessary if natural gas and 

LNG exports are to be part of the solution to our climate change problem, both in the U.S. and 

internationally.  

 

Progress is Being Made but There is More Work to Be Done 

Now for the good news. Increased attention to the air emissions issue has resulted in significant 

recent progress toward reducing air pollution from natural gas systems.  

 

In April 2012 EPA finalized regulations for New Source Performance Standards (NSPS) and 

National Emissions Standards for Hazardous Air Pollutants (NESHAP) that primarily target 

                                                           
45

 By way of comparison, the EPA estimates that global annual fugitive methane emissions from natural gas and oil 
systems in 2030 will exceed 2,500 MMT carbon dioxide equivalent (CO2e), assuming a GWP of 25, over a 100 year 
time frame (see: http://www.epa.gov/climatechange/EPAactivities/economics/nonco2projections.html).  The U.S. 
GHG inventory estimates that fugitive methane emissions from U.S. natural gas systems in 2011 were just over 170 
MMT CO2e. 

http://www.epa.gov/climatechange/EPAactivities/economics/nonco2projections.html
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VOCs and air toxics emissions but will have the co-benefit of reducing methane emissions. The 

new EPA rules require “green completions,” which reduce emissions during the flow-back stage 

of all hydraulic fracturing operations at new and re-stimulated natural gas wells. The rules will 

also reduce leakage rates for compressors, controllers, and storage tanks.  

 

EPA should be applauded for establishing these public health protections. Minimum federal stan-

dards for environmental performance are a necessary and appropriate framework for addressing 

cross-boundary pollution issues like air emissions. Federal Clean Air Act regulations are 

generally developed in close consultation with industry and state regulators and are often 

implemented by states. This framework allows adequate flexibility to enable state policy 

leadership and continuous improvement in environmental protection over time. 

 

In our recent working paper, WRI estimated that these new rules will reduce methane emissions 

enough to cut all upstream GHG emissions from natural gas systems (including shale gas) by 13 

percent in 2015 and 25 percent by 2035. As can be seen in Figure 3 below, the NSPS/NESHAP 

rules will make a big difference by helping to avoid a rise in upstream GHG emissions that 

would otherwise be likely given the projected growth in domestic natural gas production. The 

figure also shows that upstream carbon dioxide and methane emissions will remain a significant 

problem without further action. 
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Figure 3: Upstream GHG Emissions from All Natural Gas Systems, 2006 to 2035 

 

Further Potential to Reduce Fugitive Methane Emissions  

WRI estimates that by implementing just three technologies that capture or avoid fugitive 

methane emissions, upstream methane emissions across all natural gas systems could be cost-

effectively cut by up to an additional 30 percent (see Figure 4, below). The technologies include 

(a) fugitive methane leak monitoring and repair at new and existing well sites, processing plants, 

and compressor stations; (b) replacing existing high-bleed pneumatic devices with low-bleed 

equivalents throughout natural gas systems; and (c) use of plunger lift systems
46

 at new and 

existing wells during liquids unloading operations. By our estimation, these three steps would 

                                                           
46

 Note: new data from the most recent EPA emissions inventory suggests that these technologies are much more 
widely used than previously thought. See: http://insights.wri.org/news/2013/05/5-reasons-why-its-still-important-
reduce-fugitive-methane-emissions  

http://insights.wri.org/news/2013/05/5-reasons-why-its-still-important-reduce-fugitive-methane-emissions
http://insights.wri.org/news/2013/05/5-reasons-why-its-still-important-reduce-fugitive-methane-emissions
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bring down the total life cycle leakage rate across all natural gas systems to just above 1 percent 

of total production. Through adoption of five additional abatement measures that each address 

smaller emissions sources (i.e., a “Go-Getter” Scenario), the 1 percent goal would be readily 

achieved. All eight of these technologies could be implemented cost-effectively with payback 

periods of three years or less. 

Figure 4: Upstream GHG Emissions from All Natural Gas Systems; with Additional Abatement Scenarios 

 

 

Policy Recommendations 

New public policies will be needed to reduce methane emissions from both new and existing 

equipment throughout U.S. natural gas systems. WRI research has found that market conditions 

alone are not sufficient to compel industry to adequately or quickly adopt available best 
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practices. To the members of this committee, I recommend the following actions to help EPA 

and states cost-effectively reduce air emissions from natural gas systems. 

 

Expand applied technology research. Efforts to reduce upstream GHG emissions from natural 

gas systems could be aided by applied technology research at DOE. Such research should be 

expanded, with a focus on advancement of technologies to reduce the cost of leak detection, 

improve emissions measurements, and develop new and lower-cost methane emission reduction 

strategies.  

 

Update emissions factors for key processes. To help resolve questions regarding the scale of 

methane emissions from U.S. natural gas infrastructure and operations – and to inform critical 

domestic and international climate and energy policy decisions – the oil and gas sector should be 

required to directly measure and report their emissions, with results subject to independent 

verification and public disclosure. 

 

Assist with environmental regulations. With more funding, the organization STRONGER (State 

Review of Oil and Natural Gas Environmental Regulations) could provide more states with 

timely assistance in developing and evaluating environmental regulations, including (but not 

limited to) those designed to reduce air pollution. 

 

Support best practices. With more funding, EPA could do more through Natural Gas STAR and 

other programs to recognize companies that demonstrate a commitment to best practices. This 

program could further encourage voluntary industry actions by maintaining a clearinghouse for 
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technologies and practices that reduce all types of air emissions from the oil and natural gas 

sector.
47

 

 

Provide technical and regulatory assistance. Recognizing the central role of state governments 

in achieving federal National Ambient Air Quality Standards, with more funding EPA could 

provide targeted technical and regulatory assistance to states with expanding oil and natural gas 

development. One example of a successful model that could be expanded is EPA’s Ozone 

Advance Program. States concerned about smog and other air quality problems associated with 

oil and gas development voluntarily engage with this program, resulting in the co-benefit of 

reduced methane emissions. 

 

Reduce carbon dioxide emissions. Broader action is also needed on policies supporting clean 

energy and addressing climate change. A clean energy standard or putting a price on carbon 

would provide clear signals to energy markets that energy providers and users need to recognize 

the environmental and social costs as well as the direct economic costs of energy resources. 

 

Conclusions 

Some advocate for a free-market approach to managing energy production, transmission, and 

use. While I agree with the general virtues of free markets, I would also caution that there is no 

free lunch. The National Research Council has identified very significant costs associated with 
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 An example of one existing clearinghouse can be found here: http://cfpub.epa.gov/RBLC/  

http://cfpub.epa.gov/RBLC/
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fossil energy use that are hidden to most U.S. consumers.
48

 Society pays when our health-care 

premiums rise due to harmful health effects caused by high ozone levels and other air pollution; 

taxpayers pick up the tab for climate change when the frequency and intensity of extreme 

weather events causes increasing damage to our communities and critical infrastructure.  

 

Others highlight the energy and national security benefits of natural gas exports, which may 

reduce the political and economic influence of countries that do not share common interests with 

the U.S. and our allies. While such geopolitical benefits may be realized, LNG exports will do 

little to help avoid dangerous levels of climate change. We could also improve our geopolitical 

standing by demonstrating leadership in achieving greenhouse gas emissions reductions, much of 

which can be accomplished cost-effectively and with net benefits to the economy – starting with 

the policy actions recommended above. Meanwhile, the more we invest in fossil energy 

resources and infrastructure while delaying policy actions to significantly reduce GHG pollution, 

the more we expose ourselves and our allies to the destabilizing effects of climate change. In its 

2010 Quadrennial Defense Review, the Department of Defense found that “climate change could 

have significant geopolitical impacts around the world.” The same report concludes that climate 

change could further weaken fragile governments and contribute to food scarcity, spread of 

disease, and mass migration. Meanwhile, 30 military installations already face elevated risk from 

sea-level rise. 

 

                                                           
48

 NRC (National Research Council). 2010.“Hidden Costs of Energy: Unpriced Consequences of Energy Production 
and Use.” Washington, DC: The National Academies Press. Available at: 
http://www.nap.edu/catalog.php?record_id=12794. 

http://www.nap.edu/catalog.php?record_id=12794
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Every day that we take no policy action on climate change, we make the policy choice to let 

climate change run its course. This ignores the overwhelming consensus of climate scientists 

who have been warning for decades that rising GHG emissions will cause the planet to warm, 

sea levels to rise, and weather to become more extreme. It is indisputable that these climate 

changes are happening today, and in many cases much more quickly than expected. Action is 

urgently needed. 
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Abstract Carbon dioxide (CO2) emissions from fossil fuel combustion may be reduced by
using natural gas rather than coal to produce energy. Gas produces approximately half the
amount of CO2 per unit of primary energy compared with coal. Here we consider a scenario
where a fraction of coal usage is replaced by natural gas (i.e., methane, CH4) over a given
time period, and where a percentage of the gas production is assumed to leak into the
atmosphere. The additional CH4 from leakage adds to the radiative forcing of the climate
system, offsetting the reduction in CO2 forcing that accompanies the transition from coal to
gas. We also consider the effects of: methane leakage from coal mining; changes in radiative
forcing due to changes in the emissions of sulfur dioxide and carbonaceous aerosols; and
differences in the efficiency of electricity production between coal- and gas-fired power
generation. On balance, these factors more than offset the reduction in warming due to
reduced CO2 emissions. When gas replaces coal there is additional warming out to 2,050 with
an assumed leakage rate of 0%, and out to 2,140 if the leakage rate is as high as 10%. The
overall effects on global-mean temperature over the 21st century, however, are small.

Hayhoe et al. (2002) have comprehensively assessed the coal-to-gas issue. What has changed
since then is the possibility of substantial methane production by high volume hydraulic
fracturing of shale beds (“fracking”) and/or exploitation of methane reservoirs in near-shore
ocean sediments. Fracking, in particular, may be associated with an increase in the amount of
attendant gas leakage compared with other means of gas production (Howarth et al. 2011). In
Hayhoe et al., the direct effects on global-mean temperature of differential gas leakage
between coal and gas production are very small (see their Fig. 4). Their estimates of gas
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leakage, however, are less than more recent estimates. Here, we extend and update the
analysis of Hayhoe et al. to examine the potential effects of gas leakage on the climate, and on
uncertainties arising from uncertainties in leakage percentages.

We begin with a standard “no-climate-policy” baseline emissions scenario, viz. the
MiniCAM Reference scenario (MINREF below) from the CCSP2.1a report (Clarke et
al. 2007). (Hayhoe et al. used the MiniCAM A1B scenario, Nakićenović and Swart
2000.) We chose MINREF partly because it is a more recent “no-policy” scenario, but
also because there is an extended version of MINREF that runs beyond 2,100 out to 2,300
(Wigley et al. 2009). The longer time horizon is important because of the long timescales
involved in the carbon cycle where changes to CO2 emissions made in the 21st century
can have effects extending well into the 22nd century. (A second baseline scenario, the
MERGE Reference scenario from the CCSP2.1a report, is considered in the Electronic
Supplementary Material).

In MINREF, coal combustion provides from 38% (in 2010) to 51% (in 2100) of the
emissions of CO2 from fossil fuels. (The corresponding percentages for gas are 19 to 21%,
and for oil are 43 to 28%.) For our coal-to-gas scenario we start with their contributions to
energy. It is important here to distinguish between primary energy (i.e., the energy content
of the resource) and final energy (the amount of energy delivered to the user at the point of
production). For a transition from coal to gas, we assume that there is no change in final
energy. As electricity generation from gas is more efficient than coal-fired generation, the
increase in primary energy from gas will be less than the decrease in primary energy from
coal — the differential depends on the relative efficiencies with which energy is produced.

To calculate the change in fossil CO2 emissions for any transition scenario we use the
following relationship relating CO2 emissions to primary energy (P)…

ECO2 ¼ A Pcoalþ B Poilþ C Pgas ð1Þ
where A, B and C are representative emissions factors (emissions per unit of primary
energy) for coal, oil and gas. The emissions factors relative to coal that we use are 0.75 for
oil and 0.56 for gas, based on information in EPA’s AP-42 Report (EPA 2005). Using the
MINREF emissions for CO2 and the published primary energy data give a best fit emissions
factor for coal of 0.027 GtC/exajoule, well within the uncertainty range for this term.

To determine the change in CO2 emissions in moving from coal to gas under the
constraint of no change in final energy we use the equivalent of Eq. (1) expressed in terms
of final energy (F). This requires knowing the efficiencies for energy production from coal,
oil and gas (i.e., final energy/primary energy). If F=P×(efficiency), then we have

ECO2 ¼ A=að ÞFcoalþ B=bð ÞFoilþ C=cð ÞFgas ð2Þ
where a, b and c are the efficiencies for energy production from coal, oil and gas. For
changes in final energy (ΔF) in the coal-to-gas case, ΔFoil is necessarily zero. To keep
final energy unchanged, therefore, we must have ΔFgas = −ΔFcoal. Hence, from Eq. (2)
…

ΔECO2 ¼ ΔFcoalð Þ A=a� C=cð Þ ð3Þ
or …

ΔECO2 ¼ A ΔPcoal 1� C=Að Þ= c=að Þ½ � ð4Þ
As ΔPcoal is negative, the first term here is the reduction in CO2 emissions from the

reduction in coal use, while the second term is the partially compensating increase in CO2
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emissions from the increase in gas use. Our best-fit value for A is 0.027 GtC/exajoule, and
C/A=0.56. To apply Eq. (4) we need to determine a reasonable value for the relative gas-to-
coal efficiency ratio (c/a), which we assume does not change appreciably over time. For
electricity generation, the primary sector for coal-to-gas substitution, Hayhoe et al. (2002,
Table 2) give representative efficiencies of 32% for coal and 60% for gas. Using these
values, Eq. (4) becomes …

ΔECO2 ¼ 0:027 ΔPcoal 1� 0:299½ � ð5Þ

for ΔECO2 in GtC and ΔP in exajoules. Thus, for a unit reduction in coal emissions, there
is an increase in emissions from gas combustion of about 0.3 units.

To complete our calculations, we need to estimate the changes in methane, sulfur dioxide
and black carbon emissions that would follow the coal-to-gas conversion. Consider
methane first. Methane is emitted to the atmosphere as a by-product of coal mining and gas
production. Although these fugitive emissions are relatively small, they are important
because methane is a far more powerful forcing agent per unit mass than CO2.

For coal mining we use information from Spath et al. (1999; Figs. C1 and C4). A typical
US coal-fired power plant emits 1,100 gCO2/kWh, with an attendant release of methane of
2.18 gCH4/kWh, almost entirely from mining. Thus, for each GtC of CO2 emitted from a
coal-fired power plant, 7.27 TgCH4 are emitted from mining. Spath et al. give other
information that can used to check the above result. They give values of 1.91 gCH4
released per ton of coal mined from surface mines, and 4.23 gCH4 per ton from deep
mines. As 65% of coal comes from deep mines, the weighted average release is 3.42 gCH4/
ton. Since 1 ton of coal, when burned, typically produces 1.83 kgCO2, the amount of
fugitive methane per GtC of CO2 emissions from coal-fired power plants is 6.85 TgCH4/
GtC, consistent with the previous result. For our calculations we use the average of these
two results, 7.06 TgCH4/GtC; i.e., if CO2 emissions from coal-fired power generation are
reduced by 1 GtC, we assume a concomitant decrease in CH4 emissions of 7.06 TgCH4.
We assume that this value for the USA is applicable for other countries.

For leakage associated with gas extraction and transport we note that every kg of gas
burned produces 12/16 kgC of CO2. If the leakage rate is “p” percent, then, for any given
increase in CO2 emissions from gas combustion, the amount of fugitive methane released is
(p/100) (16/12) 1000=13.33 (p) TgCH4/GtC. For a leakage rate of 2.5%, for example
(roughly the present leakage rate for conventional gas extraction), this is 33.3 TgCH4/GtC.
Because the CO2 emissions change from gas combustion is much less than that for coal
(about 30%; see Eq. (5)), for the 2.5% leakage case this would make the coal mining and
gas leakage effects on CH4 quite similar (but of opposite sign), in accord with Hayhoe et al.
(2002, Table 1).

SO2 emissions are important because coal combustion produces substantial SO2,
whereas SO2 emissions from gas combustion are negligible. Reducing energy production
from coal has compensating effects — reduced CO2 emissions leads to reduced warming in
the long term, but this is offset by the effects of reduced SO2 emissions which lead to lower
aerosol loadings in the atmosphere and an attendant warming (Wigley 1991). For CO2 and
SO2, emissions factors for coal (from Hayhoe et al. 2002, Table 1) are 25 kgC/GJ and
0.24 kgS/GJ. For each GtC of CO2 produced from coal combustion, therefore, there will be
19.2 TgS of SO2 emitted. We can check this using emissions factors from Spath et al.
(1999, Figs. C1 and C2). For a typical coal-fired power plant these are 7.3 gSO2/kWh and
1,100 gCO2/kWh. Hence, for each GtC of CO2 produced from coal combustion, SO2

emissions will be 12.17 TgS. Effective global emissions factors can also be obtained from
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published emissions scenarios. For example, for changes over 2000 to 2010 in the MINREF
scenario, the emissions factor for coal combustion is approximately 11.6 TgS/GtC.

From these different estimates it is clear that there is considerable uncertainty in the SO2

emissions factor, echoing in part the widely varying sulfur contents in coal. Furthermore,
for future emissions from coal combustion the SO2 emissions factor is likely to decrease
markedly due to the imposition of SO2 pollution controls (as explained, for example, in
Nakićenović and Swart 2000). It is difficult to quantify this effect, a difficulty highlighted,
for example, by the fact that, in the second half of the 21st century, many published
scenarios show increasing CO2 emissions, but decreasing SO2 emissions — with large
differences between scenarios in the relative changes.

For the coal-to-gas transition, it is not at all clear how to account for the effects that SO2

pollution controls, that will likely go on in parallel with any transition from coal to gas, will
have on the SO2 emissions factor. However, future coal-fired plants will certainly employ
such controls, so emissions factors for SO2 will decrease over time. To account for this we
assume a value of 12 TgS/GtC for the present (2010) declining linearly to 2 TgS/GtC by
2,060 and remaining at this level thereafter. This limit and the attainment date are consistent
with the fact that many of the SRES scenarios tend to stabilize SO2 emissions at a finite,
non-zero value at around this time.

For black carbon (BC) aerosol emissions we use the relationship between BC and SO2

emissions noted by Hayhoe et al. (2002, p. 125) and make BC forcing proportional to SO2

emissions. Using best-estimate forcings from the IPCC Fourth Assessment Report, this
means that the increase in sulfate aerosol forcing changes due to SO2 emissions reductions
are reduced by approximately 30% by the attendant changes in BC emissions. This is a
larger BC effect than in Hayhoe et al. However, compared with the large overall uncertainty
in aerosol forcing, the difference between what we obtain here and the results of Hayhoe et
al. are relatively small.

For our coal-to-gas emissions scenario we assume that primary energy from coal is
reduced linearly (in percentage terms) by 50% over 2010 to 2050 (1.25%/yr), and that the
reduction in final energy is made up by extra energy from gas combustion. (A second, more
extreme scenario is considered in the Electronic Supplementary Material). In this way, there
are no differences in final energy between the MINREF baseline scenario and the coal-to-
gas perturbation scenario. Hayhoe et al. consider scenarios where coal production reduces
by 0.4, 1.0 and 2.0%/yr over 2000 to 2025. After 2050 we assume no further percentage
reduction in coal-based energy (i.e., the reduction in emissions from coal relative to the
baseline scenario remains at 50%). This is an idealized scenario, but it is sufficiently
realistic to be able to assess the relative importance of different gas leakage rates. We
consider leakage rates of zero to 10%,

Baseline and perturbed (coal to gas) primary energy scenarios for coal and gas are shown
in Fig. 1, together with the corresponding fossil-fuel CO2 emissions. The changes in
primary energy breakdown are large: e.g., in 2100, primary energy from coal is 37% more
than from gas in the baseline case, but 50% less than gas in the perturbed case. The
corresponding reduction in emissions is less striking. In the perturbed case, 2100 emissions
are reduced only by 19%. (Cases where there are larger emissions reductions are considered
in the Electronic Supplementary Material).

To determine the consequences of the coal-to-gas scenario we use the MAGICC coupled
gas-cycle/upwelling-diffusion climate model (Wigley et al. 2009; Meinshausen et al. 2011).
These are full calculations from emissions through concentrations and radiative forcing to
global-mean temperature consequences. We do not make use of Global Warming Potentials
(as in Howarth et al. 2011, for example), which are a poor substitute for a full calculation
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(see, e,g., Smith and Wigley 2000a, b). MAGICC considers all important radiative forcing
factors, and has a carbon cycle model that includes climate feedbacks on the carbon cycle.
Methane lifetime is affected by atmospheric loadings on methane, carbon monoxide,
nitrogen oxides (NOx) and volatile organic compounds. The effects of methane on
tropospheric ozone and stratospheric water vapor are considered directly. For component
forcing values we use central estimates as given in the IPCC Fourth Assessment Report
(IPCC 2007, p.4). We also assume a central value for the climate sensitivity of 3°C
equilibrium warming for a CO2 doubling. (A second case using a higher sensitivity is
considered in the Electronic Supplementary Material).

Figure 2 shows the relative and total effects of the coal-to-gas transition for a leakage
rate of 5%. This is within the estimated leakage rate range (1.7–6.0%; Howarth et al. 2011)
for conventional methane production (the effects of well site leakage, liquid uploading and
gas processing, and transport, storage and processing). For methane from shale, Howarth et
al. estimate an additional leakage of 1.9% (their Table 2) with a range of 0.6–3.2% (their
Table 1). The zero to 10.0% leakage rate range considered here spans these estimates —
although we note that the high estimates of Howarth et al. have been criticized (Ridley
2011, p. 30).

The top panel of Fig. 2 shows that the effects of CH4 leakage and reduced aerosol
loadings that go with the transition from coal to gas can appreciably offset the effect of
reduced CO2 concentrations, potentially (see Fig. 3) until well into the 22nd century.
For the leakage rate ranges considered here, however, the overall effects of the coal to

(a)

(b)

Fig. 1 a Primary energy
scenarios. Baseline data to 2100
are from the CCSP2.1a
MiniCAM Reference scenario.
After 2100, baseline primary
energy data have been
constructed to be consistent with
emissions data in the extended
MiniCAM Reference scenario
(Wigley et al. 2009 — REFEXT).
Full lines are for coal, dotted
lines are for gas. “NEW” data
correspond to the coal-to-gas
scenario. Under the final energy
constraint that ΔFgas = −ΔFcoal,
ΔPgas = −(a/c) ΔPcoal = −0.533
ΔPcoal. b Corresponding fossil
CO2 emissions data

Climatic Change



gas transition on global-mean temperature are very small throughout the 21st century,
both in absolute and relative terms (see Fig. 2a). This is primarily due to the relatively
small reduction in CO2 emissions that is effected by the transition away from coal (see
Fig. 1b). Cases where the CO2 emissions reductions are larger (due to a more extreme
substitution scenario, or a different baseline) are considered in the Electronic
Supplementary Material. The relative contributions to temperature change are similar,
but the magnitudes of temperature change scale roughly with the overall reduction in
CO2 emissions.

Figure 3 shows the sensitivity of the temperature differential to the assumed leakage
rate. The CO2 and aerosol terms are independent of the assumed leakage rate, so we only
show the methane and total-effect results. These results are qualitatively similar to those
of Hayhoe et al. who considered only a single leakage rate case (corresponding
approximately to our 2.5% leakage case). For leakage rates of more than 2%, the methane
leakage contribution is positive (i.e., replacing coal by gas produces higher methane
concentrations) — see the “CH4 COMPONENT” curves in Fig. 3. Depending on leakage
rate, replacing coal by gas leads, not to cooling, but to additional warming out to between
2,050 and 2,140. Initially, this is due mainly to the influence of SO2 emissions changes,
with the effects of CH4 leakage becoming more important over time. Even with zero
leakage from gas production, however, the cooling that eventually arises from the coal-to-
gas transition is only a few tenths of a degC (greater for greater climate sensitivity — see
Electronic Supplementary Material). Using climate amelioration as an argument for the

(a)

(b)

Fig. 2 a Baseline global-mean
warming (solid bold line) from
the extended CCSP2.1a Mini-
CAM reference scenario together
with the individual and total
contributions due to reduced CO2

concentrations, reduced aerosol
loadings and increased methane
emissions for the case of 5%
methane leakage. The bold
dashed line gives the result for all
three components, the dotted line
shows the effect of CO2 alone.
The top two thin lines show the
CH4 and aerosol components. b
Detail showing differences from
the baseline
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transition is, at best, a very weak argument, as noted by Hayhoe et al. (2002), Howarth et
al. (2011) and others.

In summary, our results show that the substitution of gas for coal as an energy
source results in increased rather than decreased global warming for many decades —
out to the mid 22nd century for the 10% leakage case. This is in accord with Hayhoe
et al. (2002) and with the less well established claims of Howarth et al. (2011) who base
their analysis on Global Warming Potentials rather than direct modeling of the climate.
Our results are critically sensitive to the assumed leakage rate. In our analysis, the
warming results from two effects: the reduction in SO2 emissions that occurs due to
reduced coal combustion; and the potentially greater leakage of methane that
accompanies new gas production relative to coal. The first effect is in accord with
Hayhoe et al. In Hayhoe et al., however, the methane effect is in the opposite direction to
our result (albeit very small). This is because our analyses use more recent information on
gas leakage from coal mines and gas production, with greater leakage from the latter. The
effect of methane leakage from gas production in our analyses is, nevertheless, small and
less than implied by Howarth et al.

Our coal-to-gas scenario assumes a linear decrease in coal use from zero in 2010 to 50%
reduction in 2050, continuing at 50% after that. Hayhoe et al. consider linear decreases
from zero in 2000 to 10, 25 and 50% reductions in 2025. If these authors assumed constant
reduction percentages after 2025, then their high scenario is very similar to our scenario.

In our analyses, the temperature differences between the baseline and coal-to-gas
scenarios are small (less than 0.1°C) out to at least 2100. The most important result,
however, in accord with the above authors, is that, unless leakage rates for new
methane can be kept below 2%, substituting gas for coal is not an effective means for
reducing the magnitude of future climate change. This is contrary to claims such as
that by Ridley (2011) who states (p. 5), with regard to the exploitation of shale gas, that
it will “accelerate the decarbonisation of the world economy”. The key point here is that it
is not decarbonisation per se that is the goal, but the attendant reduction of climate
change. Indeed, the shorter-term effects are in the opposite direction. Given the small
climate differences between the baseline and the coal-to-gas scenarios, decisions
regarding further exploitation of gas reserves should be based on resource availability
(both gas and water), the economics of extraction, and environmental impacts unrelated
to climate change.

Fig. 3 The effects of different
methane leakage rates on global-
mean temperature. The top four
curves (CH4 COMPONENT)
show the effects of methane con-
centration changes, while the
bottom four curves (TOTAL)
show the total effects of methane
changes, aerosol changes and
CO2 concentration changes. The
latter two effects are independent
of the leakage rate, and are shown
in Fig. 2. Results here are for a
climate sensitivity of 3.0°C
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Abstract
A transition from the global system of coal-based electricity generation to
low-greenhouse-gas-emission energy technologies is required to mitigate climate change in
the long term. The use of current infrastructure to build this new low-emission system
necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will
continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore,
ocean thermal inertia delays the climate benefits of emissions reductions. By constructing a
quantitative model of energy system transitions that includes life-cycle emissions and the
central physics of greenhouse warming, we estimate the global warming expected to occur as
a result of build-outs of new energy technologies ranging from 100 GWe to 10 TWe in size
and 1–100 yr in duration. We show that rapid deployment of low-emission energy systems can
do little to diminish the climate impacts in the first half of this century. Conservation, wind,
solar, nuclear power, and possibly carbon capture and storage appear to be able to achieve
substantial climate benefits in the second half of this century; however, natural gas cannot.

Keywords: climate change, bulk electricity supply, central-station greenhouse gas emissions,
electricity, climate

S Online supplementary data available from stacks.iop.org/ERL/7/014019/mmedia

1. Introduction

Hoffert et al [1] estimated that if economic growth continues
as it has in the past, 10–30 TW of carbon-neutral primary
power must be deployed by 2050 to meet global energy
demand while stabilizing CO2 concentrations at 450 ppmv,
and that even more rapid deployment of new technologies
would need to occur in the second half of this century. Pacala
and Socolow [2] have suggested that a broad portfolio of
existing technologies could put us on a trajectory toward
stabilization in the first half of this century. No previous study,
however, has predicted the climate effects of energy system
transitions.

Fossil fuels, such as coal and natural gas, emit greenhouse
gases when burned in conventional power plants. Concern
about climate change has motivated the deployment of
lower-GHG-emission (LGE) power plants, including wind,
solar photovoltaics (PV), nuclear, solar thermal, hydroelectric,
carbon capture and storage, natural gas and other energy
technologies with low GHG emissions. Electricity generation
accounts for approximately 39% of anthropogenic carbon
dioxide emissions [3, 4].

Because LGE power plants have lower operating
emissions, cumulative emissions over the lifetime of the
plants are lower than for conventional fossil-fueled plants
of equivalent capacity. LGE power plants typically require
greater upfront emissions to build, however. Consequently,
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rapid deployment of a fleet of LGE power plants could
initially increase cumulative emissions and global mean
surface temperatures over what would occur if the same net
electrical output were generated by conventional coal-fired
plants. Our results show that most of the climate benefit
of a transition to LGE energy systems will appear only
after the transition is complete. This substantial delay has
implications for policy aimed at moderating climate impacts
of the electricity generation sector.

2. Models of LGE energy system build-outs

To make our assumptions clear and explicit, we used simple
mathematical models to investigate the transient effects of
energy system transitions on GHG concentrations, radiative
forcing and global mean temperature changes. We represent
an electric power plant’s life in two phases: construction and
operation. Our model assumes that each plant produces a
constant annual rate of GHG emissions as it is constructed
and a different constant emission rate as it operates. Emission
rates were taken from the literature (see table S1 in the
supplementary online material (SOM) available at stacks.iop.
org/ERL/7/014019/mmedia). IPCC-published formulas for
the atmospheric lifetime of GHGs [5] are used to model
increases in atmospheric GHG concentrations that result from
the construction and operation of each power plant (see SOM
text SE1 for details). Radiative forcing as a function of
time, 1F(t), follows directly from GHG concentration using
expressions from the IPCC [5].

We estimated the change in surface temperature, 1T by
using a simple energy-balance model. The radiative forcing
1F supplies additional energy into the system. Radiative
losses to space are determined by a climate feedback
parameter, λ. We used λ = 1.25 W m2 K−1 [6–8], which
yields an equilibrium warming of 3.18 K resulting from
the radiative forcing that follows a doubling of atmospheric
CO2 from 280 to 560 ppmv. The approach to equilibrium
warming is delayed by the thermal inertia of the oceans. We
represented the oceans as a 4 km thick, diffusive slab with
a vertical thermal diffusivity kv = 10−4 m2 s−1 [8]. Other
parameter choices are possible, but variations within reason
would not change our qualitative results, and this approach
is supported by recent tests with three-dimensional models
of the global climate response to periodic forcing [9]. Our
simple climate model treats direct thermal heating in the
same way as radiative heating; heat either mixes downward
into the ocean or radiates outward to space. To isolate the
effects of a transition to LGE energy systems, we consider
GHG emissions from only the power plant transition studied.
Initial, steady-state atmospheric GHG concentrations are set
to PCO2 = 400 ppmv, PCH4 = 1800 ppbv, and PN2O =

320 ppbv, at which 1F = 1T = 0. (Use of other background
concentrations for GHGs would not alter our qualitative
results (SOM text SE1.3 available at stacks.iop.org/ERL/7/
014019/mmedia)).

Although life-cycle estimates of emissions from individ-
ual power plants (SOM table S1 available at stacks.iop.org/
ERL/7/014019/mmedia) vary, they show a consistent pattern

at both the low and high ends of the range, as seen in
figures 1(A) and (B). For renewable plants, peak emissions
occur during plant construction. For fossil-fueled plants, in
contrast, operating emissions dominate; typically <1% of
lifetime plant emissions are attributable to construction. For
nuclear plants, both construction and fueling for ongoing
operation make substantial contributions to lifetime GHG
emissions, although these emissions are far lower than
the emissions from coal-fired power plants. The primary
GHG emission from hydroelectric plants is methane (CH4)
produced by anaerobic decay of organic matter that is
inundated as the reservoir fills [10–12]; the amount emitted
varies with local conditions.

To provide a stable supply of electricity, a new power
plant must be built as each old power plant nears the
end of its useful life. As shown in figures 1(C) and (D),
fossil-fueled plants produce a comparatively smooth increase
in atmospheric GHG concentrations because emissions during
construction are small compared to those from operations. In
contrast, the larger contribution during construction of nuclear
and renewable power plants produces increased emissions
each time a plant of this kind is replaced, yielding a sawtooth
trend in atmospheric GHG concentrations for a constant
output of electricity.

Construction and operation of a new power plant of any
technology modeled here will produce higher atmospheric
CO2 concentrations than would have occurred if no new
generating capacity were added. Carbon dioxide poses a
special concern because of its long lifetime in the atmosphere.
With the exception of dams, carbon dioxide emissions
dominate the GHG radiative forcing from power plants.
Radiative forcing due to CH4 and N2O at any point in time
accounts for <1% of the total GHG forcing from wind, solar
and nuclear power plants; <5% for coal-fired plants; and
<10% for natural gas plants. CH4 dominates only in the case
of hydroelectric power, for which it contributes ∼95% of the
radiative forcing in the first 20 yr, declining monotonically to
∼50% at 70 yr after construction.

We contrasted LGE energy technologies with a high-
GHG-emission (HGE) energy technology, namely conven-
tional coal-based electricity production. We define ‘HGE
warming’ to mean the increase in global mean surface
temperature that would have been produced by the continued
operation of the coal-based HGE energy system. This
warming is additional to any temperature increases occurring
as a result of past or concurrent emissions from outside the
1 TWe energy system considered here.

To illustrate the consequences of rapid deployments of
new energy systems, we considered emissions from a variety
of linear energy system transitions, each of which replaces
1 TWe of coal-based electricity by bringing new LGE power
plants online at a constant rate over a 40 yr period. (1 TWe is
the order of magnitude of the global electrical output currently
generated from coal [10].) Existing coal-fired generators were
assumed to be new at the onset of the transition, to be
replaced with equivalent plants at the end of their lifetime,
and to be retired at the rate of new plant additions in order
to maintain constant annual output of electricity. Lifetimes
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Figure 1. The time evolution of atmospheric CO2(eq) concentrations resulting from the construction and operation of a 1 GWe electric
power plant varies widely depending on the type of plant. (A), (B) Atmospheric CO2(eq) concentrations from single power plants of
different types based on high (A) and low (B) estimates of life-cycle power plant emissions. Renewable technologies have higher emissions
in the construction phase (thin lines prior to year zero); conventional fossil technologies have higher emissions while operating (thick lines);
emitted gases persist in the atmosphere even after cessation of operation (thin lines after year zero). The operating life of plants varies by
plant type. (C), (D) Atmospheric CO2(eq) concentrations from the construction of series of power plants built to maintain 1 GWe output.
For high estimates of life-cycle emissions, periodic replacement of aging plants produces pulses of emissions resulting in substantial,
step-like change in atmospheric concentrations. However, in all cases except hydroelectric, continued electricity production results in
increasing trends of atmospheric CO2(eq) concentrations.

and thermal efficiencies of the coal plants were taken from
the life-cycle analysis (LCA) literature, as were the additional
emissions associated with constructing power plants (SOM
table S1 available at stacks.iop.org/ERL/7/014019/mmedia).
Using GHG emission data from this literature, we calculated
time series for emissions, radiative forcing, and temperature
for build-outs of eight LGE energy technologies, for a range
of rollout durations (SOM text SN3 available at stacks.iop.
org/ERL/7/014019/mmedia) including, as a lower bound, the
unrealistic case in which all plants are built simultaneously
in a single year. Climate consequences of a portfolio of
technologies can be approximated by a linear combination
of our results for each technology taken individually. For
each technology, we examine low and high emission estimates
from the LCA literature, and label these ‘Low’ and ‘High’.
The time evolution of emissions and temperature increases
resulting from an example transition, from coal to natural gas,
is illustrated in SOM table S4 (available at stacks.iop.org/
ERL/7/014019/mmedia).

We investigated transitions from an HGE energy system
to various LGE options for a wide range of transition rates
(figure 4). Building on previous life-cycle analyses (SOM
table S1 available at stacks.iop.org/ERL/7/014019/mmedia),
we estimated the magnitude of most direct and indirect
GHG emissions from the construction and operation of

the power plants, including GHG emissions associated with
long-distance electricity transmission and thermal emissions
attributable to power generation and use (SOM text SN2
available at stacks.iop.org/ERL/7/014019/mmedia). During
this transition, GHG emissions attributed to the fleet include
both those due to construction or operation of the new
technology and those due to coal-fired generators that have
not yet been replaced. Various energy system transitions could
be imagined. Delaying the transition delays long-term climate
benefits of LGE energy. Accelerating the transition decreases
total fleet emissions from burning coal, but increases the rate
of emissions produced by new construction (figure 4(C)).
Qualitatively similar results hold for exponential and logistic
growth trajectories (SOM text SD1 and figures S10–12
available at stacks.iop.org/ERL/7/014019/mmedia).

3. Delayed benefits from energy system transitions

By the time any new power plant begins generating electricity,
it has incurred an ‘emissions debt’ equal to the GHGs released
to the atmosphere during its construction. The size of this
debt varies from one LGE technology to another, as does the
operating time required to reach a break-even point at which
emissions avoided by displacing power from an HGE plant
equal the emissions debt. All transitions from coal to other
energy technologies thus show higher GHG concentrations
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Figure 2. Many decades may pass before a transition from coal-based electricity to alternative generation technologies yields substantial
temperature benefits. Panels above show the temperature increases predicted to occur during a 40 yr transition of 1 TWe of generating
capacity. Warming resulting from continued coal use with no alternative technology sets an upper bound (solid black lines), and the
temperature increase predicted to occur even if coal were replaced by idealized conservation with zero CO2 emissions (dashed lines)
represents a lower bound. The colored bands represent the range of warming outcomes spanned by high and low life-cycle estimates for the
energy technologies illustrated: (A) natural gas, (B) coal with carbon capture and storage, (C) hydroelectric, (D) solar thermal, (E) nuclear,
(F) solar photovoltaic and (G) wind.

and temperatures at the outset than would have occurred in the
absence of a transition to a new energy system. We calculated,
for each technology, the number of years following the start
of electricity generation until the transition starts reducing
HGE warming, as well as the times at which the transition
has reduced HGE warming by 25% or 50%.

Our results (figure 2 and SOM tables S3 and S4
available at stacks.iop.org/ERL/7/014019/mmedia) illustrate
the general finding that emerges from our results: energy
system transitions cause reductions in HGE warming only
once they are well underway, and it takes much longer still
for any new system to deliver substantial climate benefits
over a conventional coal-based system. It is instructive
to examine idealized energy conservation, considered here
as a technology that produces electricity with zero GHG
emissions. Conservation is thus equivalent to phasing out
1 TWe of coal power over 40 yr without any replacement
technology. Even in this case, GHGs (particularly CO2)
emitted by coal during the phaseout linger in the atmosphere

for many years; in addition, ocean thermal inertia causes
temperature changes to lag radiative forcing changes.
Consequently, conservation takes 20 yr to achieve a 25%
reduction in HGE warming and 40 yr to achieve a 50%
reduction.

This idealized rollout of conservation that displaces
1 TWe of conventional coal power sets a lower bound to the
temperature reductions attainable by any technology that does
not actively withdraw GHGs from the atmosphere. This lower
bound is approached most closely by wind, solar thermal,
solar PV and nuclear, using the low LCA estimates; these
cases yield temperature increases that exceed the idealized
conservation case by only a fraction of a degree, and the time
to a 50% reduction in HGE warming is delayed by only a
few years. Differences among these same technologies appear,
however, if high LCA estimates are used (figure 3). When
using the complete range of LCA estimates, for example, our
model projects that a 40 yr, linear transition from coal to solar
PV would cause a 1.4–6.9 yr period with greater warming than
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Figure 3. Transitions of 1 TWe of coal-based electricity generation to lower-emitting energy technologies produces modest reductions in
the amount of global warming from GHG emissions; if the transition takes 40 yr to complete, only the lowest-emission technologies can
offset more than half of the coal-induced warming in less than a century. (A) Increases in global mean surface temperature attributable to the
1 TWe energy system 100 yr after the start of a 40 yr transition to the alternative technology. Even if the coal-based system were phased out
without being replaced by new power plants of any kind, GHGs released by the existing coal-fired plants during the phaseout would
continue to add to global warming (rightmost column). Split columns reflect temperature changes calculated using both high and low
emissions estimates from a range of life-cycle analyses, as described in the text and SOM text SN2 (available at stacks.iop.org/ERL/7/
014019/mmedia). (B) Time required from the start of power generation by an alternative technology to achieve break-even, warming equal
to what would have occurred without the transition from coal (lightest shading); a 25% reduction in warming (medium shading); and a
reduction by half (darkest shading) as a result of the transition. The bars span the range between results derived using the lowest and highest
LCA estimates of emissions. For numeric values, see SOM table S3 (available at stacks.iop.org/ERL/7/014019/mmedia).

had the transition not been undertaken, and that the transition
would take 23–29 yr to produce a 25% reduction in HGE
warming and 43–53 yr to avoid half of the HGE warming.

Natural gas plants emit about half the GHGs emitted by
coal plants of the same capacity, yet a transition to natural
gas would require a century or longer to attain even a 25%
reduction in HGE warming (SOM table S3 available at stacks.
iop.org/ERL/7/014019/mmedia). Natural gas substitution thus
may not be as beneficial in the near or medium term
as extrapolation from ‘raw’ annual GHG emissions might
suggest.

Carbon capture and storage (CCS) also slows HGE
warming only very gradually. Although CCS systems are
estimated to have raw GHG emissions of ∼17%–∼27%

that of unmodified coal plants, replacement of a fleet of
conventional coal plants by coal-fired CCS plants reduces
HGE warming by 25% only after 26–110 yr. This transition
delivers a 50% reduction in 52 years under optimistic
assumptions and several centuries or more under pessimistic
assumptions.

More generally, any electricity-generating technology
that reduces GHG emissions versus coal plants by only a
factor of two to five appears to require century-long times
to accrue substantial temperature reductions. Comparison of
1 TWe, 40 yr transitions from coal to a wide range of
LGE energy technologies reveals little difference in warming
produced by the various technologies until the transition is
complete (figures 2(A)–(G)). Although it takes many decades
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Figure 4. Analysis of a wide range of energy transition rates, scales, and technologies finds that replacement of coal-fired power plants
requires many years to deliver climate benefits. For a given alternative energy technology and transition scale, the range of simulation
results can be summarized by a contour plot; those above show results for 1 TWe, linear transitions to (A) natural gas, (B) coal with CCS,
(C) solar PV and (D) conservation; high emission estimates from LCA studies were used in each case. For plots of other technologies,
transition scales, and build-out trajectories, see SOM figures S10 and S11 (available at stacks.iop.org/ERL/7/014019/mmedia). In these
plots, the vertical axis represents the duration of the build-out; results span build-out durations from 1 to 100 yr, which corresponds to
annual additions of output ranging from 10 to 1000 GWe. Contour lines plot the ratio 1Tnew/1Tcoal, where 1Tnew is the increase in global
mean surface temperature projected to result from the transition to the lower-emission technology. Contour lines thus represent the time to
achieve reductions in warming ranging from 10% (a ratio of 0.9) to 90% (a ratio of 0.1). Whereas the progress of the build-out (horizontal
axis) is measured from the start of power generation in figure 3, here time is measured from the start of construction, which we assume lasts
five years before each new plant begins generating. (For ease of comparison, conservation is treated similarly.) Dashed magenta lines
indicate the completion of construction of the last plant in the build-outs. The instantaneous break-even point at which 1Tnew = 1Tcoal is
indicated by thick black curves. A better metric of the break-even time, however, is where the time-averaged integral of 1Tnew equals that of
1Tcoal (tTBE, green curves). A 40 yr deployment of 1 TWe of solar PV, for example, would not reach tTBE until year 15 of the build-out
(asterisked point).

to achieve substantial benefits from a phaseout of coal-based
power plants, instantaneously turning coal plants off without
replacing the generating capacity would yield a 50% reduction
in HGE warming in 11 yr, as shown in figure 4(D), which
plots the reduction in temperature increases to be expected in
any given year from elimination of 1 TWe of coal capacity by
build-outs ranging in duration from 1 to 100 yr.

We selected coal-fired plants as the basis for comparison
because this energy technology emits the most GHGs per
unit electricity generated; replacing plants of this kind thus
delivers the greatest climate benefits. If the new technology
were instead to replace natural gas plants, then even less
CO2 emission would be avoided, and the times to achieve
reductions in warming relative to a natural gas baseline would
be even longer than projected here.

4. Effects of scale, duration, technological
improvement and bootstrapping

Although we focus here on 40 yr, linear transitions of a
1 TWe energy system, we examined a far broader range of
cases; none of these cases altered our central conclusions.
Figure 4, for example, illustrates the HGE warming caused
by transitions to several LGE energy technologies that range
in duration from 1 to 100 yr. We have simulated transitions
ranging from 0.1 to 10 TWe. In addition to the linear transition
presented here, we examined exponential and logistic
transitions (SOM texts SD1–SD3 and figures S8, S11–S14
available at stacks.iop.org/ERL/7/014019/mmedia). We also
analyzed plausible effects of technological improvement by
reducing the emission per unit energy generation over time by
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various exponential rates, an approach that effectively forces
each technology under study to approach the zero emission
case of conservation asymptotically (SOM text SD3 and figure
S14 available at stacks.iop.org/ERL/7/014019/mmedia). The
analysis reveals that the long timescale required for energy
system transitions to reduce temperatures substantially is
not sensitive to technological improvement. High rates of
technological improvement could alter, however, the relative
rank of energy technologies in their abilities to mitigate future
warming.

Finally, we examined ‘bootstrapping’ transitions. The
exponential, linear and logistic models all assume that
generated electricity is used to displace coal and thus lower
emissions. A very different strategy is to use a low-GHG-
emitting technology to bootstrap itself. This strategy is
particularly interesting for wind and solar PV because each
of them require substantial amounts of electricity in the
manufacturing of key components.

A bootstrapping transition uses electricity from the first
plant built to manufacture more plants of the same kind,
which in turn provide energy to build new plants, and so
on exponentially (SOM text SD2 and figure S13 available
at stacks.iop.org/ERL/7/014019/mmedia). In this approach,
however, no electricity is turned over to the grid—and thus no
coal is replaced—until the build-out goal has been installed
and brought online, at which point the coal is displaced
all at once. The effect of bootstrapping is thus equivalent
to distributing the electrons from PV systems and using
coal-generated electrons to construct the PV arrays.

Emissions estimates from the LCA studies we use in our
principal analysis, in contrast, assume carbon intensities lower
than that of coal-based electricity and thus lower emissions
than would occur with either bootstrapping or coal as the
source of energy for new plant construction. For both wind
and solar, bootstrapping produces higher temperatures during
the first 70–100 yr than would occur if the plants were
constructed using power from the existing grid. For transitions
lasting longer than 100 yr, bootstrapping does yield lower
GHG emissions for plant construction and, eventually, lower
temperatures than grid-connected build-outs. On this extended
time scale, however, emissions for grid-connected models are
likely to fall substantially as well, due to changes in the mix
of electricity generation.

Figure 3(A) shows that, for fossil fuel plants, emissions
from plant operation are the predominant source of life-cycle
emissions, and they are responsible for the majority of the
global temperature increase produced. Conservation yields the
largest temperature reductions. In transitions to wind, solar,
and nuclear technologies, temperature increases caused by
emissions during plant construction exceed those due to plant
operation; the resulting temperature increases are dwarfed,
however, by those caused by emissions from coal plants as
they are being phased out.

Temperature increases due to transmission and waste heat
are small but can amount to a substantial fraction of the
total temperature increase associated with the lowest emission
technologies.

5. Sources of uncertainty

Our central result is that transitions from coal to energy
technologies having lower carbon emissions will not
substantially influence global climate until more than half
a century passes, and that even large transitions are likely
to produce modest reductions in future temperatures. These
fundamental qualitative conclusions are robust, but our
quantitative calculations incorporate important sources of
uncertainty in representations of both the energy system and
the physical climate system.

We characterize uncertainty in energy system properties
by presenting both high and low estimates from life-
cycle analyses (e.g., figures 1–3). Our model of the
physical climate system is affected by uncertainties both
in the relationship between greenhouse gas emissions and
atmospheric concentrations and in the relationship between
atmospheric concentrations and the resulting climate change.
The IPCC [5] states that equilibrium climate sensitivity to a
doubling of atmospheric CO2 content ‘is likely to lie between
2 and 4.5 ◦C with a most likely value of approximately
3 ◦C.’ Our model yields a climate sensitivity of 3.18 ◦C per
CO2-doubling. Physical climate system uncertainties could
thus potentially halve or double our quantitative results. The
impact of most of these uncertainties would apply equally
to all technologies, however, so relative amounts of warming
resulting from different technology choices are likely to be
insensitive to uncertainties about the climate system.

6. Conclusions

Here, we have examined energy system transitions on the
scale of the existing electricity sector, which generates
∼1 TWe primarily from approximately 3 TW thermal
energy from fossil fuels [3]. It has been estimated, however,
that 10–30 TW of carbon-neutral thermal energy must be
provisioned by mid-century to meet global demand on a
trajectory that stabilizes the climate with continued economic
growth [1].

It appears that there is no quick fix; energy system
transitions are intrinsically slow [13]. During a transition,
energy is used both to create new infrastructure and to satisfy
other energy demands, resulting in additional emissions.
These emissions have a long legacy due to the long lifetime
of CO2 in the atmosphere and the thermal inertia of the
oceans. Despite the lengthy time lags involved, delaying
rollouts of low-carbon-emission energy technologies risks
even greater environmental harm in the second half of
this century and beyond. This underscores the urgency
in developing realistic plans for the rapid deployment of
the lowest-GHG-emission electricity generation technologies.
Technologies that offer only modest reductions in emissions,
such as natural gas and—if the highest estimates from the
life-cycle analyses (SOM table S1 available at stacks.iop.org/
ERL/7/014019/mmedia) are correct—carbon capture storage,
cannot yield substantial temperature reductions this century.
Achieving substantial reductions in temperatures relative to
the coal-based system will take the better part of a century,
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and will depend on rapid and massive deployment of some
mix of conservation, wind, solar, and nuclear, and possibly
carbon capture and storage.
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Ms. Kimberly D. Bose, Secretary 
Federal Energy Regulatory Commission 
888 First Street, N.E. 
Washington, D.C. 20426 
 
 
Re:  Sabine Pass LNG, L.P. and Sabine Pass Liquefaction, LLC 

Monthly Construction Progress Report for Sabine Pass Liquefaction Project  
Docket Nos. CP11-72-000 & CP13-2-000 
 

 
Dear Ms. Bose: 
 
On April 16, 2012, the Federal Energy Regulatory Commission (“FERC”) issued an Order Granting 
Authorization under Section 3(a) of the Natural Gas Act (“April 16 Order”) in the above-captioned docket.  The 
Order authorizes Sabine Pass LNG, L.P. and Sabine Pass Liquefaction, LLC (“Sabine Pass”) to site, construct, 
and operate the Sabine Pass Liquefaction Project at the Sabine Pass LNG Terminal, located in Cameron Parish, 
Louisiana.  On August 2, 2013, the FERC issued an Order Amending Section 3 Authorization (“August 2 Order”) 
for the Sabine Pass Modification Project.   
 
Pursuant to Condition 7 in Appendix D of the April 16 Order, and Condition 7 of the August 2 Order, Sabine Pass 
is herein submitting its monthly construction progress report for February 2014.    
 
Should you have any questions about this filing, please feel free to contact the undersigned at (713) 375-5000. 
 
Thank you, 
 
/s/ Karri Mahmoud   
 
Karri Mahmoud  
Sabine Pass LNG, L.P.   
Sabine Pass Liquefaction, LLC 
 
 
cc:  Ms. Sentho White, Federal Energy Regulatory Commission 
 Ms. Karla Bathrick, Federal Energy Regulatory Commission 
 Ms. Magdalene Suter, Federal Energy Regulatory Commission  
 Mr. Stephen Kusy, Federal Energy Regulatory Commission 
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1.0 Executive Summary 
 

This report covers activities of the SPL Stage 1 and SPL Stage 2 projects occurring during the 
month of February 2014.  Stage 1 Engineering is 94.4% complete, Procurement is 91.4%, and 
Subcontract and direct hire Construction work are 37.1% and 18.6% complete, respectively, for 
the period.  Stage 1 overall project completion is 60.8% against the plan of 63.6%.   
 
Stage 2 Engineering is now 48.1% complete, Procurement is 38.1%, and Subcontract and direct 
hire Construction work are 12.0% and 0.4% complete, respectively.  Overall project completion 
for Stage 2 is 23.3% against the plan of 22.3%.   
 
Actual project progress and current recovery plans continues to support the achievement of the 
scheduled Substantial Completion Dates for Trains 1 and 2, which remain as February 2016 
and June 2016, respectively.  Trains 3 and 4 Substantial Completion Dates are April 2017 and 
August 2017. 

 

2.0 Project Highlights 
 

In February, Stage 1 engineering is complete and is in punch list mode.  For Stage 2, 
engineering completed the IFC of all Train 3 ISOs. 

 
The Train 1 heavy wall vessels and the propane substation building have arrived at Site.  The 
1st set of refrigeration compressors are in transit and will arrive in March, as will the BOG 
compressors and the first shipments of air coolers for the Train 1 cryo rack. First structural steel 
for Train 3 was delivered to site in February.  Procurement continues to support construction 
activities at the jobsite through delivery of piping and structural items.     
 
During the month of February, Subcontracts managed the following major subcontracts for 
Trains 1 and 2:  soil improvement, field erected tanks, onsite concrete batch plant, offsite 
equipment insulation, permanent telecommunications, and fire/gas detection.  The electric heat 
tracing subcontract was awarded.  For Trains 3 and 4, Subcontracts managed efforts for pile 
fabrication and installation, field erected tanks, and busing. 
 
Construction in Train 1 continued in structural and paving concrete, structural steel erection, and 
installation of underground and aboveground piping, electrical grounding, cable tray and 
mechanical equipment. Train 2 work continued in structural and paving concrete, structural steel 
erection, electrical grounding, and installation of underground and aboveground pipe.  
Construction in the OSBL area continued with structural and paving concrete, structural steel 
erection, electrical grounding, installation of underground and aboveground pipe, and 
mechanical equipment installation.  The Revamp area continued in structural concrete, 
structural steel erection, underground and aboveground piping, and electrical cable.  
 
Construction in Train 3 continues with concrete works in area 233N01 and Train 3 underground 
piping. Seal slabs have been poured in area 233A01 and 233D01 and excavation was done for 
the hot oil sump. 

3.0 Environmental, Safety & Health Progress 
 

During the month of February, the project had 34 first aid, 18 near misses, and 1 OSHA 
recordable.   
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 Near Miss 

Cases 
First Aid OSHA Cases LWDC Cases 

 Month ITD1 Month ITD1 Month ITD1 Month ITD1 
Bechtel  18 106 34 267 1 8 0 0 
Subcontractors 0 26 0 20 0 5 0 0 
Total 18 132 34 287 1 13 0 0 

1. ITD = Project totals reflect inception to date and are combined for Stage 1 & 2.         

4.0 Schedule 
 

Overall, Train 1 & 2 project progress is 60.8% complete against a plan of 63.6%. Overall Train 3 
& 4 project progress is 23.3% complete against a plan of 22.3% complete.  

5.0 Construction 
 

Area Comments Planned Work for Next Reporting 
Period 

Liquefaction 
Stage 1 Area – 
Train 1 

 Continued constructing 
foundations, erecting structural 
steel and installing above 
ground and underground piping. 

 Continued installing mechanical 
equipment. 

 Continued installing electrical 
cable tray in the propane 
condenser rack. 

 Continue activities to support 
Train 1 construction. 

 

Liquefaction 
Stage 1 Area – 
Train 2 

 Continued constructing 
foundations, erecting structural 
steel and installing above 
ground and underground piping. 

 Installing mechanical equipment 

 Continue activities to support 
Train 2 construction. 

 

Liquefaction 
Stage 2 Area – 
Train 3 

 Placement of the seal slab in the 
Train 3 propane Area. 

 Train 3 piles reached substantial 
completion. 

 Started placement of structural 
concrete. 

 Started excavation for the hot oil 
sump. 

 Started underground piping 
installation in the Train 3 area. 

 Continue soil stabilization.  
 Continue pile driving. 
 Continue activities to support 

Train 3 construction. 
 

Liquefaction 
Stage 2 Area – 
Trains 4 

 Soil Stabilization 
 Continue pile driving activities 

within Train 4 and OSBL.   
 

 Continue soil stabilization.  
 Continue pile driving. 
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Area Comments Planned Work for Next Reporting 
Period 

OSBL  Constructing pipe racks in the 
LNG Tank 3 and 5 areas. 

 Constructing the marine flare.  
 Continued constructing 

foundations and erecting 
structural steel. 

 Continue activities to support 
OSBL construction. 

 

Support 
Buildings Area 

 Continued construction of the 
warehouse and control room.  

 Continued constructing pipe 
racks in the Tank 3 and 5 areas. 

 Continued constructing the 
marine flare.  

 Continue warehouse and control 
room work.  

Access Roads, 
Waterline 

 Water trucks were operated for 
dust control, as necessary.  

 Dust control will continue. 

Laydown, 
Staging Areas 

 Continued mixing for soil 
stabilization and began laying 
rock in the area north of Trains 3 
and 4. 

 Contractors will continue to 
mobilize personnel and 
equipment.  

Construction 
Dock (Ro-Ro) 

 Received and offload pile 
barges at the construction dock. 

 Receiving and offloading heavy 
equipment at the Ro-Ro. 

 Dredging occurred this period. 

 Continue to receive pile barges. 

6.0 Permitting and Environmental 
 
None. 

 
Summary of Problems, Non-Compliances, and Corrective Actions.   
Date Description  
None.  

 
Agency Contacts/Inspections 
Agency Name Date Location/Activity 
    

 
Proposed Changes to Schedule or Scope: 
None. 
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7.0 Progress Pictures 
 

  

     
 

Train 1 131G02 (inlet gas-seal slab for paving) (24-Feb-2014) 
 

      
 

Train 1 131K01 (dehydration mercury removal) (24-Feb-2014) 
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Train 1 131N01 (propane rack accumulator set) (20-Feb-2014) 
 

      
 

Train 1 131N02 (propane substation) (24-Feb-2014) 
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Train 1 131N01 (set accumulator) (24-Feb-2014) 
 
 

      
 

Train 2 132A01 (compressor methane tabletop) (27-Feb-2014) 
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Train 2 132A02 (compressor substation) (27-Feb-2014) 
 
 

       
 

Train 2 132B01 (amine storage area and thermal oxidizer) (24-Feb-2014) 
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Train 2 131M01 (heavies removal unit paving) (13-Feb-2014) 
 
 

        
 

OSBL 135F01 (water treatment area) (24-Feb-2014) 
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Dated at Houston, Texas this 20th day of March 2014.    

 
 

/s/ Karri Mahmoud  
Karri Mahmoud 
Sabine Pass LNG, L.P.   
Sabine Pass Liquefaction, LLC 
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