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Introduction 
 
Natural gas currently provides 24% of the energy used by homes and businesses in the 
US (1). It is also an important feedstock for the chemical and fertilizer industry. In the 
early 1990’s the price of natural gas was low (around $3/1000 ft3) and as a result there 
was a surge in construction of natural gas plants (2). Today, the Henry Hub price of 
natural gas is around $15/1000 ft3 (3), and most of these plants are operating below 
capacity. However, natural gas consumption is expected to increase 41% by 2025 (to 30 
trillion cubic feet), with demand from electricity generators growing the fastest 
(increasing 90% by 2025). At the same time natural gas production in North America is 
expected to remain fairly constant at around 24 trillion cubic feet, so that demand of 
imported liquefied natural gas (LNG) will increase to around 6 trillion cubic feet or 20% 
of the total supply by 2025 (3). 
 
The natural gas system is the second largest source of greenhouse gas emissions in the 
US, generating around 132 million tons of CO2 Equivalents (1). Several studies have 
performed emission inventories for the natural gas lifecycle from production to 
distribution.  Usually these analyses have been performed for domestic natural gas, so 
that emissions from the LNG lifecycle stages have been ignored. If, as the DOE estimates 
suggest, larger percentages of the supply of natural gas will come from these imports, 
emissions from these steps in the lifecycle could influence the total natural gas lifecycle 
emissions. Thus, comparisons between coal and natural gas that concentrate only on the 
emissions at the utility plant may not be adequate. The objective of this study is to 
perform an analysis of the natural gas lifecycle greenhouse gas emissions taking the 
emissions from LNG into consideration. Different scenarios for the percentage of natural 
gas as LNG are analyzed. Moreover, a comparison with the coal fuel cycle greenhouse 
gas emissions will be presented, in order to have a better understanding of the advantages 
and disadvantages of using coal versus natural gas for electricity generation. 
 
The Natural Gas Life Cycle 
 
The natural gas life cycle starts with the production of natural gas and ends at the 
combustion plant. NaturalGas.org has a very detailed description of this life cycle. 
Readers are encouraged to visit this website if they need more information about the 
topic.  
 
Geological surveys and seismic studies are used to determine the location of natural gas 
deposits. After these sites have been identified, wells are constructed. There are two types 
of well for the extraction of natural gas: oil wells and natural gas wells. Oil wells are 



drilled primarily to extract oil, but natural gas can also be obtained. Natural gas wells are 
specifically drilled to extract natural gas.  
 
After natural gas is extracted through the wells, it has to be processed to meet the 
characteristics of the natural gas used by consumers. Consumer natural gas is composed 
primarily of methane. However, when natural gas is extracted, it exists with other 
hydrocarbons such as propane and ethane. In addition, the extracted natural gas contains 
impurities such as water vapor and carbon dioxide that must be removed. Natural gas 
processing plants are usually constructed in gas producing regions. The natural gas is 
transported from the extraction sites to these plants through a system of low-diameter, 
low-pressure pipelines. At the plant, water vapor is first removed from the gas by using 
absorption or adsorption methods. Glycol Dehydration is an example of absorption, in 
which glycol, which has a chemical affinity to water, is used to absorb the vapor. Solid-
Desiccant Dehydration is an example of adsorption. In this process the natural gas passes 
through towers that contain activated alumina or other solid desiccants. As the gas is 
passed through these towers, the water particles are retained on the surface of the solids. 
 
As previously mentioned, natural gas is extracted with other hydrocarbons that must be 
removed. The removal of these hydrocarbons, called Natural Gas Liquids (NGL), is done 
with the absorption method or the cryogenic expander process. The absorption method is 
similar to the water absorption method, but instead of glycol, absorbing oil is used. The 
cryogenic expansion method consists of dropping the temperatures of the gas causing the 
hydrocarbons to condense so that they can be separated from the natural gas. The 
absorption method is used to remove heavier hydrocarbons, while lighter hydrocarbons 
are removed using the cryogenic expansion process. 
 
The final step in the processing of natural gas is the removal of sulfur and carbon dioxide. 
Often, natural gas from the wells contains high amounts of these two compounds, and it 
is called sour gas. Sulfur must be removed from the gas because it is a potentially lethal 
chemical if breathed. In addition, sour gas can be corrosive for the transmissions and 
distribution pipelines. The process of removing sulfur and carbon dioxide from the gas is 
similar to the absorption processes previously described.  
 
After the natural gas is processed it enters the transmission system. In the US, this 
transmission system is the interstate natural gas pipeline network, which consists of 
thousands of miles of high-pressure pipelines that transport the gas from producing areas 
to high demand areas. In addition to the pipes, this pipeline system has compressor 
stations along the way, usually placed in 40 to 100 mile intervals. These compressor 
stations use a turbine or an engine to compress the natural gas and maintain the high 
pressure required in the pipeline. The turbines and engines generally run with a small 
amount of the gas from the pipeline. In addition to compressor stations, metering stations 
are also placed along the system to allow companies to better monitor and manage the 
natural gas in the pipes. Moreover valves can be found through the entire length of the 
pipelines to regulate flow. 
 



Natural gas can be stored to meet seasonal demand increases or to meet sudden, short-
term demand increases. Natural gas is usually stored in underground facilities. Such 
facilities could be built in reconditioned depleted gas reservoirs, aquifers or salt caverns. 
According to the Energy Information Administration (EIA), in 2003 the total storage 
capacity in the United States was 8.2 billion cubic feet. 82% of this capacity was in 
depleted gas fields, 15% in depleted aquifers, and 3% in salt caverns. Moreover during 
that year, withdrawals from storage added to 3.1 billion cubic feet while injections totaled 
3.3 billion cubic feet (4). It is important to note that some gas injected into underground 
storage becomes physically unrecoverable gas. This gas is known as base gas.  
 
Distribution is the final step before natural gas is delivered to consumers. Local 
Distribution Companies transport natural gas from delivery points along the transmission 
system to local consumers via a low-pressure, small-diameter pipeline system. Natural 
gas that arrives to a city gate through the transmission system is depressurized, and 
filtered to remove any moisture or particulate content. In addition, Mercaptan is added to 
the gas to create the distinctive smell that allows leaks to be detected. Small compressors 
are used in the distribution system to maintain the pressure required. 
 
When Liquefied Natural Gas (LNG) is added to the mix of natural gas, three additional 
lifecycle stages are created: liquefaction, tanker transport, and regasification. Figure 1 
shows the total life cycle of natural gas including the LNG stages.  
 

 



 

Figure 1: Natural Gas Life Cycle Including LNG. 
 
In the liquefaction process, natural gas is cooled and pressurized to convert it to liquid 
form, reducing its volume by a factor of 610 (5). These liquefaction plants are generally 
located in coastal areas of LNG export countries. Currently 75% of the LNG imported to 
the US comes from Trinidad, but this percentage is expected to decrease as more imports 
come from Russia, the middle east, and southeast Asia (4). LNG tankers bring this gas to 
the US.  According to EIA, there were 151 LNG tankers in operation worldwide as of 
October 2003. The majority of these tankers have the capacity to carry more than 120,000 
cubic meters of liquefied natural gas (equivalent to 2.59 billion cubic feet of natural gas, 
enough gas to supply an average of  31,500 residences for a year (4)) and the total fleet 
capacity is 17.4 million cubic meters of liquid (equivalent to 366 billion cubic feet of 
natural gas). There are currently fifty-five ships under construction that will increase total 
fleet capacity to 25.1 million cubic meters of liquid (equivalent to 527 billion cubic feet 
of natural gas) in 2006 (6).  
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Regasification facilities are the last step LNG must pass through before going into the US 
pipeline system. Regasification facilities are LNG marine terminals where LNG tankers 
unload their gas. These facilities consist of storage tanks and vaporization equipment that 
warms the LNG to return it to the gaseous state. There are currently 5 LNG terminals in 
operation in the US: Lake Charles, Louisiana; Elba Island, Georgia; Cove Point, 
Maryland; Everett, Massachusetts; and a recently opened offshore terminal in the Gulf of 
Mexico. These terminals have a combined base load capacity of 3.05 billion cubic feet 
per day (about 1 trillion cubic feet per year). In addition to these there are over fifty 
proposed facilities for a total proposed capacity of 62 billion cubic feet per day (23 
trillion cubic feet per year). Figure 2 shows the proposed location of these facilities (6). 
 
As shown in Figure 1, natural gas combustion is the last stage in the natural gas lifecycle. 
In the US, natural gas is used for electricity generation, heating, and several industrial 
processes. Approximately 24% of the electricity generated comes from natural gas (1). 
Natural gas plants have heat rates that range from 5,800 BTU/kWh to 12,300 BTU/kWh 
(7). 
 
US Natural Gas Industry in 2003 
 
In 2003, the total supply of natural gas in the US was over 27 trillion cubic feet. Of this, 
26.5 trillion cubic feet were produced in North America (US, Canada, and Mexico), and 
0.5 trillion cubic feet were imported in the form of LNG. 75% of LNG came from 
Trinidad and Tobago. Other exporting countries included Algeria, Malaysia, Nigeria, 
Qatar, and Oman (4). Table 1 shows more detailed statistics about the state of the US 
natural gas industry in 2003. Numbers may not add up due to rounding. 
 

Table 1: 2003 Natural Gas Industry Statistics (All units in million cubic feet) (4) 
 

Gross Withdrawals 24,000,000
Total Dry Production 19,000,000
Total Supply 27,000,000
Total Consumption 22,500,000
Total Imports 4,000,000
Pipeline Imports 3,500,000
LNG Imports 505,000

 
 
Greenhouse gas emissions from Natural Gas produced in North America 
 
During the late 1980’s and early 1990’s the US Environmental Protection Agency (EPA) 
conducted a study to determine methane emissions from the natural gas industry. This 
very comprehensive study developed hundreds of activity and emissions factors from all 
the areas of the natural industry. These factors were developed using data collected from 
the different sectors of the industry as well as from data collected in field measurements. 
Table 2 presents the percentage of produced natural gas that is emitted to the atmosphere 



during the lifecycle according to the results of the previously described study, as well as 
the source of these emissions. 
 

Table 2: Methane Emissions from North American Gas Life Cycle as a Percentage 
of Natural Gas Produced (8). 

 

Lifecycle Segment Emission Sources 
Emissions as a 

Percentage of Gas 
Produced 

Pneumatic Devices 
Fugitive Emissions 
Underground Pipeline Leaks 
Blow and Purge 
Compressor 

Production 

Glycol Dehydrator 

0.38% 

Fugitive Emissions 
Compressor Processing 
Blow and Purge 

0.16% 

Fugitive Emissions 
Blow and Purge 
Pneumatic Devices 

Transmission and 
Storage 

Compressor 

0.53% 

Underground Pipeline Leaks 
Meter and Pressure Stations Distribution 
Costumer Meter 

0.35% 

 
Based on the statistics presented in Table 1, 26.5 billion cubic feet of natural gas were 
produced in North America in 2003. Using the percentages of natural gas emitted, an 
average heat content of 1,030 BTU/ft3, and the assumption that 100% of the natural gas 
lost is methane (density 19.23 gr/ ft3) which may result in a slight overestimate of 
emissions given that the real percentage of methane in natural gas varies between 94% 
and 98%; total methane emission were calculated to develop the emission factors shown 
in Figure 4. 
 
In addition to methane, carbon dioxide emissions are produced from the combustion of 
natural gas used during the lifecycle stages previously described. The Energy Information 
Administration maintains records of the amount of natural gas used during the 
production, processing, transmission, storage, and distribution of natural gas. This data 
for 2003 can be seen in Table 3. Assuming that 100% of this gas is methane, total carbon 
dioxide emissions were found using thermodynamic calculations. These emissions were 
then added to methane emissions to obtain the total emission factors shown in Figure 3. 
 



Table 3: Natural Gas Used During Natural Gas Life Cycle. (All units in million 
cubic feet) (4). 

 
Flared Gas 98,000
Lease Fuel 760,000
Pipeline and Distribution Use 665,000
Plant Fuel 365,000

 
In 1993 the Natural Gas STAR program was established by the EPA to reduce methane 
emissions from the natural gas industry. The program is a voluntary partnership with the 
goal of encouraging industries to adopt practices that increase efficiency and reduce 
emissions. Since 1993, 338 billion cubic feet of methane have been eliminated. In 2003, 
52,900 million cubic feet of methane emissions were eliminated, a 9% reduction over 
projected emissions for that year without improved practices (9). This data was used to 
develop a range of emission factors for the North American natural gas industry. Figure 2 
shows the total range of emission factors for the North American natural gas lifecycle. It 
can be seen that total lifecycle emission for natural gas produced in North America are 
approximately 140 lbs CO2/MMBTU, an amount dominated by combustion emissions for 
natural gas plants currently in operation in the US of an average 120 lbs CO2/MMBTU 
(10)  
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Figure 2: Carbon Dioxide Equivalent Emission Factors from North American Gas 
Lifecycle (All Units in lbs CO2/MMBTU). 

 
Greenhouse gas emissions from LNG lifecycle 
 
As shown in Figure 1, the addition of liquefied natural gas (LNG) into the North 
American gas system introduces three additional stages into the lifecycle of natural gas: 
liquefaction, tanker transport, and regasification. It is assumed that natural gas produced 
in other countries and imported to the US in the form of LNG produces the same 
emissions in the production, processing, transmission, and distribution stages of the 
lifecycle as if the natural gas were produced in North America. Additional emission 
factors needed to be developed for the three additional lifecycle stages of LNG. Tamura 
et-al (11) has reported emission factors for the liquefaction stage in the range of 1.32 to 
3,67 gr-C/MJ. Using these results, the emission factors for liquefaction were found in 
units of pounds of CO2 per million BTUs, as shown in Table 4. 
 

Table 4: Liquefaction Emission Factors. 

Emission Factors (lb CO2/MMBTU) Liquefaction Min Average Max 
CO2 from fuel combustion 11 12 13 
CO2 from flare combustion 0.00 0.77 1.5 
CH4 from vent 0.09 1.3 9.8 
CO2 in raw gas 0.09 4.0 6.6 

 
Emissions from tanker transport of LNG were calculated using Equation 1. 
 

EmissionFactor =
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TC
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ×

Dx

TS
× FC ×

1
24

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

x
∑

LNGT

 

Equation 1: Tanker Emission Factor. 
 
Where EF is the tanker emission factor of 3,200 kg CO2/ ton of fuel consumed; 2 is the 
number of trips each tanker does for every load (one bringing the LNG and one going 
back empty); LNGx is the amount of natural gas (in cubic feet) brought from each 
country; TC is the tanker capacity in cubic feet of natural gas, assumed to be 120,000 
cubic meters of LNG (1 m3 LNG = 21,537 ft3 NG); Dx is the distance from each country 
to US LNG facilities; TS is the tanker speed of 14 Knots; FC is a fuel consumption of 41 
tons of fuel per day; and 24 is hours per day (12).  
 
Exporting countries, their distances to the LNG facilities at Lake Charles, LA and 
Everett, MA, and the 2003 US imports can be seen in Table 5.  



Table 5: LNG Exporting Countries in 2003 (4). 

Exporting 
Country 

Distance to Lake 
Charles Facility 
(nautical miles) 

Distance to Everett, 
MA Facility 

(nautical miles) 

2003 US Imports 
(million cubic feet 

NG) 
Algeria 5,000 3,300 53,000 

Australia 12,000 11,000 0 
Brunei 12,000 11,000 0 

Indonesia 12,000 11,000 0 
Malaysia 12,000 11,000 2,700 
Nigeria 6,100 5,000 50,000 
Oman 8,900 7,500 8,600 
Qatar 9,700 8,000 14,000 

Trinidad 2,200 2,000 380,000 
UAE 9,600 7,959 0 

Russia 9,600 11,000 0 
 
Emission factors for tanker transport from each country to both US facilities can be seen 
in Figure 3.  
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Figure 3: Tanker Emission Factors from Each Country 
 
Since most of the LNG in 2003 was brought from Trinidad, the weighted average 
emission factor calculated for trips from each country to the Everett, MA facility is 
considered to be the a lower bound. An upper bound was obtained by assuming that all 
LNG was brought from Indonesia to the Lake Charles facility, and an average was 
obtained assuming all LNG was brought from Oman to the Lake Charles, LA facility. 
These resulting numbers can be seen in Table 6. 
 



 

Table 6: Tanker Transport Emission Factors. 

Emission Factors (lb CO2/MMBTU) 
Min 1.8 

Average 5.7 
Max 7.3 

 
Regasification emissions were reported by Tamura et-al to be 0.1 gr C/ MJ (0.85 lb 
CO2/MMBTU) (11). Ruether et-al reports an emission factor of 1.6 gr CO2/MJ (3.75 lb 
CO2/MMBTU) for this stage of the LNG lifecycle by assuming that 3% of the gas is used 
to run the regasification equipment (13). These values were used as the lower and upper 
bounds of the range of emission from regasification of LNG. Total LNG lifecycle 
emissions are shown in Figure 4. They range between 154 and 184 lbs CO2/MMBTU 
 

 

Figure 4: LNG Lifecycle Emission Factors (All Units in lbs CO2/MMBTU). 

 

Coal Lifecycle and its Greenhouse Gas Emissions for Electricity Generation 
 
The coal lifecycle is conceptually simpler than the natural gas lifecycle, consisting of 
only three steps, as shown in Figure 5. 
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Figure 5: Coal Lifecycle. 
 
In the US, 67% of the coal produced is mined in surface mines, while the remaining 33% 
is extracted from underground mines (1). Mined coal is then processed to remove 
impurities. Coal is then transported from the mines to the consumers via rail (84%), barge 
(11%), and trucks (5%) (14). Emissions from these lifecycle steps were calculated using 
the EIO-LCA tool developed at Carnegie Mellon University. In order to use this tool, 
economic values for each step of the lifecycle were necessary. In 1997, the year for 
which the EIO-LCA tool has data, the price of coal was $18.14/ton (15). Moreover, the 
cost for rail transport, barge, and truck transport was $11.06/ton,  $3.2/ton, and $5.47/ton 
respectively (14). For a million tons of coal the following emission information was 
obtained using EIO-LCA. 
 

Table 7: EIO-LCA Emission Data for Coal Lifecycle (16). 

Sector Total GHG Emissions 
(MT CO2 Equiv) 

Mining 75,000 
Rail Transportation 36,000 

Water Transportation 3,700 
Truck Transportation 5,000 

 
Using a weighted average US coal heat content of 10,266 BTU/lb (17) and the data 
previously discussed, it was found that the average emission factor for coal mining and 
transport is 11 lb CO2/MMBTU.  
 
In 1999, the National Renewable Energy Lab published a report on lifecycle emissions 
for power generation from coal (18). Upstream coal emissions (including transportation) 
from underground mines are reported to be 15 lbs CO2/MMBTU, while upstream coal 
emissions from surface mines is 9.9 lbs CO2/MMBTU. As previously mentioned, 67% of 
coal is currently mines in surface mines, while 33% is mined in underground mines (1). 
Using this information, the current coal upstream emissions average 12 lbs 
CO2/MMBTU, which is very close to the emission factor obtained using EIO-LCA. In 
the future, the distribution of US mines could change, affecting the average emission 
factor. For this reason, the range of coal upstream emissions from underground and 
surface mines described above is used for this paper. Moreover, the average emission 
factors for coal combustion at utility plants used is 205 lb CO2/MMBTU (10). 
 
 
Comparing Natural Gas and Coal Lifecycle Emissions 
 
Emissions factors for the natural gas lifecycle and the coal lifecycle were previously 
reported in pounds of CO2 per MMBTU of fuel. Coal and natural gas power plants have 



different efficiencies; thus one million BTU of coal does not generate the same amount of 
electricity as one million BTU of natural gas. For this reason, emission factors must be 
converted to units of pounds of CO2 per kWh of electricity generated. This conversion 
was done using the heat rates of natural gas and coal plants. Figure 6 shows the 
distribution of these heat rates, and Figure 7 shows the resulting emission factor 
distribution for coal and natural gas. These distributions were obtained using the 
cumulative distribution function of EIA electricity generation data for all utility plants in 
2003 (7). The minimum value represents the heat rate at which 5% of the electricity 
generated with the specific fuel is seen. Similarly the mean and maximum values are the 
heat rates at which 50% and 95% of the electricity has been generated with each fuel. As 
seen in Figure 6, the average heat rate for natural gas plants is lower than the average heat 
rate for coal plants, however the upper range of heat rates for natural gas plants surpasses 
the heat rates for coal plants. 
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Figure 6: Natural Gas and Coal Plant Heat Rates (7). 
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Figure 7: Emission Factors for Coal and Natural Gas Lifecycles. 

 
Note that the average emission factor for coal combustion is higher than the emission 
factor for natural gas combustion. This does not change too much when the whole 
lifecycle is considered. More important seems to be the effect that including upstream 
emissions have in the range of emission factors for natural gas. While the average 
emission factor for the total coal lifecycle only increases by 5% compared to combustion 
emissions, the average emission factor for a natural gas mix with 20% LNG is 21% 
higher than the combustion emissions. Moreover, the maximum emission factor of the 
natural gas lifecycle gets closer to the minimum coal lifecycle emission factor. These 
results imply that if emissions at the combustion stage of the lifecycle could be 
controlled, natural gas would not be a much better alternative to coal in terms of 
greenhouse gas emissions.  
 
New Generation Capacity 
 
According to the DOE, by 2025 43 GW of inefficient gas and oil fired facilities will be 
retired, while 281 GW of new capacity will be installed (3). IGGC and NGCC power 
plants will probably be installed. These plants are generally more efficient than current 
technologies (average HHV Efficiencies are 37.5% and 50.2% respectively) (19) and thus 
have lower carbon emissions at the combustion stage. In addition, carbon capture and 
sequestration (CCS) can be performed more easily with these newer technologies. CCS is 
a process by which carbon emissions at the power plant are separated from other 
combustion products, captured and injected into underground geologic formations such 
as saline formations and depleted oil/gas fields. Experts believe that 90% CCS will be 



technologically and economically feasible in the future. Having CCS at IGCC and NGCC 
plants decreases the efficiency of the plants to average HHV efficiencies of 32.4% and 
42.8% respectively (19) but overall lifecycle emissions would be greatly reduced and 
would be essentially the same for coal and natural gas (with 20% LNG). However, the 
major contributor for coal emissions would be at the combustion stage, while for natural 
gas the majority of the emissions would come from upstream processes. Figure 8, shows 
total emissions with CCS for IGCC and NGCC plants using average upstream emission 
factors of 11.6 lbs CO2 Equiv/MMBTU and 25.6 lbs CO2 Equiv/MMBTU for coal and 
natural gas respectively 

 

Figure 8: Lifecycle Emission Factors for IGCC and NGCC plants w/ CCS. 
 
Discussion 
 
It has been shown that there is high uncertainty about overall lifecycle carbon emissions 
for coal and LNG. In the future, as newer generation technologies and CCS are installed, 
overall emissions from electricity generated with coal and electricity generated with 
natural gas could be surprisingly similar. There is push right now from power generator 
to increase import of LNG. They seem to hope that the price of natural gas will decrease 
with these imports and they will be able to recover the investment they made in natural 
gas plants that are currently producing under capacity. These investments should be 
considered sunk costs and it is important to revaluate whether investing billions of dollars 
in LNG infrastructure will lead us into an energy path that cannot be easily changed as it 
will be harder to consider these investments as sunk costs once the expected 
environmental benefits are not achieved.  
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The analysis presented here only includes carbon emission, and no consideration was 
given to issues like energy security. Increasingly, LNG will come from areas of the world 
that are politically unstable. Policymakers should evaluate this increased dependence on 
foreign fuel before making decisions about future energy investments. In addition, the 
analysis presented only considers the use of natural gas for electricity generation. Natural 
gas is an indispensable fuel for many sectors of the US economy. As demand for natural 
gas from the electric utilities increases, these other sectors will probably be affected by 
higher natural gas prices. It is important to analyze whether these other sectors constitute 
a better use for natural gas than electricity generation, which has alternative fuels at its 
disposal. 
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