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A bs tr ac t

Background

Although many studies have linked elevations in tropospheric ozone to adverse 

health outcomes, the effect of long-term exposure to ozone on air pollution–related 

mortality remains uncertain. We examined the potential contribution of exposure 

to ozone to the risk of death from cardiopulmonary causes and specifically to death 

from respiratory causes.

Methods

Data from the study cohort of the American Cancer Society Cancer Prevention Study 

II were correlated with air-pollution data from 96 metropolitan statistical areas in 

the United States. Data were analyzed from 448,850 subjects, with 118,777 deaths 

in an 18-year follow-up period. Data on daily maximum ozone concentrations were 

obtained from April 1 to September 30 for the years 1977 through 2000. Data on 

concentrations of fine particulate matter (particles that are ≤2.5 µm in aerodynamic 

diameter [PM2.5]) were obtained for the years 1999 and 2000. Associations between 

ozone concentrations and the risk of death were evaluated with the use of standard 

and multilevel Cox regression models.

Results

In single-pollutant models, increased concentrations of either PM2.5 or ozone were 

significantly associated with an increased risk of death from cardiopulmonary 

causes. In two-pollutant models, PM2.5 was associated with the risk of death from 

cardiovascular causes, whereas ozone was associated with the risk of death from 

respiratory causes. The estimated relative risk of death from respiratory causes that 

was associated with an increment in ozone concentration of 10 ppb was 1.040 (95% 

confidence interval, 1.010 to 1.067). The association of ozone with the risk of death 

from respiratory causes was insensitive to adjustment for confounders and to the 

type of statistical model used.

Conclusions

In this large study, we were not able to detect an effect of ozone on the risk of death 

from cardiovascular causes when the concentration of PM2.5 was taken into account. 

We did, however, demonstrate a significant increase in the risk of death from respi-

ratory causes in association with an increase in ozone concentration.
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S
tudies conducted over the past 15 

years have provided substantial evidence 

that long-term exposure to air pollution is 

a risk factor for cardiopulmonary disease and 

death.1-5 Recent reviews of this literature suggest 

that fine particulate matter (particles that are 

≤2.5 µm in aerodynamic diameter [PM2.5]) has a 

primary role in these adverse health effects.6,7 

The particulate-matter component of air pollu-

tion includes complex mixtures of metals, black 

carbon, sulfates, nitrates, and other direct and 

indirect byproducts of incomplete combustion 

and high-temperature industrial processes.

Ozone is a single, well-defined pollutant, yet 

the effect of exposure to ozone on air pollution–

related mortality remains inconclusive. Several 

studies have evaluated this issue, but they have 

been short-term studies,8-10 have failed to show 

a statistically significant effect,1,3 or have been 

based on limited mortality data.11 Recent reviews 

by the Environmental Protection Agency (EPA)12 

and the National Research Council13 have ques-

tioned the overall consistency of the available 

data correlating exposure to ozone and mortal-

ity. Similar conclusions about the evidence base 

for the long-term effects of ozone on mortality 

were drawn by a panel of experts in the United 

Kingdom.14

Nonetheless, previous studies have suggested 

that a measurable effect of ozone may exist, par-

ticularly with respect to the risk of death from 

cardiopulmonary causes. In one of the larger 

studies, ozone was significantly associated with 

death from cardiopulmonary causes15 but not 

with death from ischemic heart disease. How-

ever, the estimated effect of ozone on the risk of 

death from cardiopulmonary causes in this study 

was attenuated when PM2.5 was added to the 

analysis in copollutant models. On the basis of 

suggested effects of ozone on the risk of death 

from cardiopulmonary causes (which includes 

death from respiratory causes) but an absence of 

evidence for effects of ozone on the risk of death 

from ischemic heart disease, we hypothesized 

that ozone might have a primary effect on the 

risk of death from respiratory causes.

Me thods

Health, Mortality, and Confounding Data

Our study used data from the American Cancer 

Society Cancer Prevention Study II (CPS II) co-

hort.16 The CPS II cohort consists of more than 

1.2 million participants who were enrolled by 

American Cancer Society volunteers between Sep-

tember 1982 and February 1983 in all 50 states, 

the District of Columbia, and Puerto Rico. Enroll-

ment was restricted to persons who were at least 

30 years of age living in households with at least 

one person 45 years of age or older. After provid-

ing written informed consent, the participants 

completed a confidential questionnaire that in-

cluded questions on demographic characteristics, 

smoking history, alcohol use, diet, and educa-

tion.17 Deaths were ascertained until August 1988 

by personal inquiries of family members by the 

volunteers and thereafter by linkage with the Na-

tional Death Index. Through 1995, death certifi-

cates were obtained and coded for cause of death. 

Beginning in 1996, codes for cause of death were 

provided by the National Death Index.18

The study population for our analysis includ-

ed only those participants in CPS II who resided 

in U.S. metropolitan statistical areas within the 

48 contiguous states or the District of Columbia 

(according to their address at the time of enroll-

ment) and for whom data were available from at 

least one pollution monitor within their metro-

politan area. The study was approved by the Ot-

tawa Hospital Research Ethics Board, Canada.

Data on “ecologic” risk factors at the level of 

the metropolitan area representing social vari-

ables (educational level, percentage of homes with 

air conditioning, percentage of the population 

who were nonwhite), economic variables (house-

hold income, unemployment, income disparity), 

access to medical care (number of physicians and 

hospital beds per capita), and meteorologic vari-

ables were obtained from the 1980 U.S. Census 

and other secondary sources (see the Supplemen-

tary Appendix, available with the full text of this 

article at NEJM.org). These ecologic risk factors, 

as well as the individual risk factors collected 

in the CPS II questionnaire, were assessed as po-

tential confounders of the effects of ozone.3,5,19,20

Estimates of Exposure to Air Pollution 

Ozone data were obtained from 1977 (5 years 

before the identification of the CPS II cohort) 

through 2000 for all air-pollution monitors in 

the study metropolitan areas from the EPA’s Aero-

metric Information Retrieval System. Ozone data 

at each monitoring site were collected on an hour-

ly basis, and the daily maximum value for the site 

was determined. All available daily maximum 

values for the monitoring site were averaged over 
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each quarter year. The quarterly average values 

were reported for each monitor only when at least 

75% of daily observations for that quarter were 

available.

The averages of the second (April through 

June) and third (July through September) quar-

ters were calculated for each monitor if both 

quarterly averages were available. The period 

from April through September was selected be-

cause ozone concentrations tend to be elevated 

during the warmer seasons and because fewer 

data were available for the cooler seasons.

The average of the second and third quarterly 

averages for each year was then computed for all 

the monitors within each metropolitan area to 

form a single annual time series of air-pollution 

measurements for each metropolitan area for the 

period from 1977 to 2000. In addition, a sum-

mary measure of long-term exposure to ambient 

warm-season ozone was defined as the average 

of annual time-series measurements during the 

entire period from 1977 to 2000. Individual mea-

sures of exposure to ozone were then defined by 

assigning the average for the metropolitan area 

to each cohort member residing in that area.

Data on exposure to PM2.5 were also obtained 

from the Aerometric Information Retrieval Sys-

tem database for the 2-year period from 1999 to 

2000 (data on PM2.5 were not available before 

1999 for most metropolitan areas).5 The average 

concentrations of PM2.5 were included in our 

analyses to distinguish the effect of particulates 

from that of ozone on outcomes.

Statistical Analysis

Standard and multilevel random-effects Cox pro-

portional-hazard models were used to assess the 

risk of death in relation to exposures to pollu-

tion. The subjects were matched according to age 

(in years), sex, and race. A total of 20 variables 

with 44 terms were used to control for individual 

characteristics that might confound or modify 

the association between air pollution and death. 

These variables, which were considered to be of 

potential importance on the basis of previous 

studies, included individual risk factors for which 

data had been collected in the CPS II question-

naire. Seven ecologic covariates obtained from 

the 1980 U.S. Census (median household income, 

the proportion of persons living in households 

with an income below 125% of the poverty line, 

the percentage of persons over the age of 16 years 

who were unemployed, the percentage of adults 

with less than a high-school [12th-grade] educa-

tion, the percentage of homes with air condition-

ing, the Gini coefficient of income inequality 

[ranging from 0 to 1, with 0 indicating an equal 

distribution of income and 1 indicating that one 

person has all the income and everyone else has 

no income20], and the percentage of persons who 

were white) were also included. These variables 

were included at two levels: as the average for the 

metropolitan statistical area and as the difference 

between the average for the ZIP Code of resi-

dence and the average for the metropolitan sta-

tistical area. Additional sensitivity analyses were 

undertaken for ecologic variables that were avail-

able for only a subgroup of the 96 metropolitan 

statistical areas (see the Supplementary Appen-

dix). Models were estimated for either ozone or 

PM2.5. In addition, models with both PM2.5 and 

ozone were estimated.

In additional analyses, our basic Cox models 

were modified by incorporating an adjustment for 

community-level random effects, which allowed 

us to take into account residual variation in mor-

tality among communities.21 The baseline hazard 

function was modulated by a community-specific 

random variable representing the residual risk of 

death for subjects in that community after indi-

vidual and ecologic risk factors had been con-

trolled for (see the Supplementary Appendix).

A formal analysis was conducted to assess 

whether a threshold existed for the association 

between exposure to ozone and the risk of death 

(see the Supplementary Appendix). A standard 

threshold model was postulated in which there 

was no association between exposure to ozone 

and the risk of death below a specified threshold 

concentration and a linear association (on the 

logarithmic scale of the proportional-hazards 

model) above the threshold.

The question of whether specific time windows 

were associated with the health effects was inves-

tigated by subdividing the follow-up interval into 

four periods (1982 to 1988, 1989 to 1992, 1993 to 

1996, and 1997 to 2000). Exposures were matched 

for each of these periods and also tested for a 

10-year average on the basis of the 5-year follow-

up period and the 5 years before the follow-up 

period (see the Supplementary Appendix).

R esult s

The analytic cohort included 448,850 subjects re-

siding in 96 metropolitan statistical areas (Fig. 1). 
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In 1980, the populations of these 96 areas ranged 

from 94,436 to 8,295,900. Data were available on 

the concentration of ambient ozone from all 96 

areas and on the concentration of PM2.5 from 86 

areas. The average number of air-pollution moni-

tors per metropolitan area was 11 (range, 1 to 57), 

and more than 80% of the areas had 6 or more 

monitors.

The average ozone concentration for each 

metropolitan area during the interval from 1977 to 

2000 ranged from 33.3 ppb to 104.0 ppb (Fig. 1). 

The highest regional concentrations were in 

Southern California and the lowest in the Pacific 

Northwest and parts of the Great Plains. Moder-

ately elevated concentrations were present in 

many areas of the East, Midwest, South, and 

Southwest.

The baseline characteristics of the study popu-

lation, overall and as a function of exposure to 

ozone, are presented in Table 1. The mean age 

of the cohort was 56.6 years, 43.4% were men, 

93.7% were white, 22.4% were current smokers, 

and 30.5% were former smokers. On the basis of 

estimates from 1980 Census data, 62.3% of 

homes had air conditioning at the time of initial 

data collection.

During the 18-year follow-up period (from 

initial CPS II data collection in 1982 through the 

end of follow-up in 2000), there were 118,777 

deaths in the study cohort (Table 2). Of these, 

58,775 were from cardiopulmonary causes, includ-

ing 48,884 from cardiovascular causes (of which 

27,642 were due to ischemic heart disease) and 

9891 from respiratory causes.

In the single-pollutant models, exposure to 

ozone was not associated with the overall risk of 

death (relative risk, 1.001; 95% confidence inter-

val [CI], 0.996 to 1.007) (Table 3). However, it was 

significantly correlated with an increase in the 

risk of death from cardiopulmonary causes. A 

Figure 1. Ozone Concentrations in the 96 Metropolitan Statistical Areas in Which Members of the American Cancer Society Cohort 
 Resided in 1982.

The average exposures were estimated from 1 to 57 monitoring sites within each metropolitan area from April 1 to September 30  
for the years 1977 through 2000.
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10-ppb increment in exposure to ozone elevated 

the relative risk of death from the following 

causes: cardiopulmonary causes (relative risk, 

1.014; 95% CI, 1.007 to 1.022), cardiovascular 

causes (relative risk, 1.011; 95% CI, 1.003 to 

1.023), ischemic heart disease (relative risk, 1.015; 

95% CI, 1.003 to 1.026), and respiratory causes 

(relative risk, 1.029; 95% CI, 1.010 to 1.048).

Inclusion of the concentration of PM2.5 mea-

sured in 1999 and 2000 as a copollutant (Table 3) 

attenuated the association with exposure to ozone 

for all the end points except death from respira-

tory causes, for which a significant correlation 

persisted (relative risk, 1.040; 95% CI, 1.013 to 

1.067). The concentrations of ozone and PM2.5 

were positively correlated (r = 0.64 at the subject 

level and r = 0.56 at the metropolitan-area level), 

resulting in unstable risk estimates for both pol-

lutants. The concentration of PM2.5 remained 

significantly associated with death from cardio-

Table 1. Baseline Characteristics of the Study Population in the Entire Cohort and According to Exposure to Ozone.*

Variable
Entire Cohort
(N = 448,850) Concentration of Ozone 

33.3–53.1 ppb 
(N = 126,206)

53.2–57.4 ppb 
(N = 95,740)

57.5–62.4 ppb 
(N = 106,545)

62.5–104.0 ppb 
(N = 120,359)

No. of MSAs 96 24 24 24 24

No. of MSAs with data on PM2.5 86 21 20 23 22

Concentration of PM2.5 (µg/m3) 11.9±2.5 13.1±2.9 14.7±2.1 15.4±3.2

Individual risk factors

Age (yr) 56.6±10.5 56.7±10.4 56.4±10.7  56.3±10.4 56.9±10.5

Male sex (%) 43.4 43.5 43.1 43.5 43.2

White race (%) 93.7 94.3 95.1 93.9 91.8

Education (%)

Less than high school 12.1 11.5 13.6 12.1 11.6

High school 30.6 30.2 33.6 32.1 27.4

Beyond high school 57.3 58.3 52.8 55.8 61.0

Smoking status

Current smokers 

Percentage of subjects 22.4 22.0 23.5 22.2 21.9

No. of cigarettes/day 22.0±12.4 22.0±12.3 22.0±12.5 22.2±12.5 21.9±12.4

Duration of smoking (yr) 33.5±11.0 33.4±10.8 33.4±11.1 33.4±11.0 33.9±11.2

Started smoking <18 yr of age (%) 9.6 9.3 10.5 9.4 9.3

Started smoking ≥18 yr of age (%) 13.2 13.3 13.4 13.3 13.0

Former smokers 

Percentage of subjects 30.5 31.2 30.8 29.5 30.4

No. of cigarettes/day 21.6±14.7 21.6±14.6 22.2±15.1 21.6±14.6 21.3±14.6

Duration of smoking (yr) 22.2±12.6 22.1±12.5 22.6±12.6 22.0±12.5 22.4±12.7

Started smoking <18 yr of age (%) 11.9 11.8 12.7 11.5 11.8

Started smoking ≥18 yr of age (%) 18.5 19.3 17.9 17.9 18.5

Exposure to smoking (hr/day) 3.3±4.4 3.2±4.4 3.4±4.5 3.4±4.5 3.1±4.4

Pipe or cigar smoker only (%) 4.1 4.0 4.2 4.3 3.8

Marital status (%)

Married 83.5 84.2 83.0 83.7 83.1

Single 3.6 3.4 4.0 3.8 3.2

Separated, divorced, or widowed 12.9 12.4 13.0 12.5 13.7
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Table 1. (Continued.)

Variable
Entire Cohort
(N = 448,850) Concentration of Ozone 

33.3–53.1 ppb 
(N = 126,206)

53.2–57.4 ppb 
(N = 95,740)

57.5–62.4 ppb 
(N = 106,545)

62.5–104.0 ppb 
(N = 120,359)

Body-mass index† 25.1±4.1 25.1±4.1 25.3±4.2 25.1±4.1 24.8±4.0

Level of occupational exposure to particulate matter (%)‡

0 50.7 50.9 50.0 50.8 51.0

1 13.3 13.4 13.1 13.3 13.3

2 11.4 11.5 10.8 11.4 11.9

3 4.6 4.7 4.8 4.6 4.5

4 6.1 6.2 6.2 6.1 6.0

5 4.2 4.2 4.3 4.1 4.1

6 1.1 1.0 9.5 1.4 8.4

Not able to ascertain 8.6 8.2 1.2 8.4 0.9

Self-reported exposure to dust or fumes (%) 19.5 19.5 19.8 19.7 19.1

Level of dietary-fat consumption (%)§

0 14.5 13.7 14.9 14.1 15.3

1 15.9 15.8 16.5 15.6 15.9

2 17.4 17.6 17.7 17.2 17.1

3 21.2 21.8 21.1 21.3 20.8

4 30.9 31.1 29.8 31.9 30.9

Level of dietary-fiber consumption (%)¶

0 16.6 16.0 17.5 16.7 16.6

1 19.9 19.4 20.5 20.1 19.7

2 18.8 18.6 19.2 19.1 18.5

3 22.8 23.0 22.4 22.8 22.7

4 21.9 23.0 20.4 21.3 22.5

Alcohol consumption (%)

Beer

Drinks beer 22.9 24.3 23.2 22.9 21.4

Does not drink beer 9.7 9.5 9.3 9.5 10.2

No data 67.4 66.2 67.5 67.6 68.4

Liquor

Drinks liquor 28.0 30.4 27.9 25.4 27.9

Does not drink liquor 8.8 8.4 8.5 10.1 9.2

No data 63.2 61.2 63.6 65.5 62.9

Wine

Drinks wine 23.5 25.4 22.5 21.1 24.3

Does not drink wine 8.9 8.7 8.8 9.3 9.1

No data 67.6 65.9 68.7 69.6 66.6
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pulmonary causes, cardiovascular causes, and 

ischemic heart disease when ozone was included 

in the model. The association of ozone concen-

trations with death from respiratory causes re-

mained significant after adjustment for PM2.5.

Risk estimates for ozone-related death from 

respiratory causes were insensitive to the use of 

a random-effects survival model allowing for 

spatial clustering within the metropolitan area 

and state of residence (Table 1S in the Supple-

mentary Appendix). The association between in-

creased ozone concentrations and increased risk 

of death from respiratory causes was also insen-

sitive to adjustment for several ecologic variables 

considered individually (Table 2S in the Supple-

mentary Appendix).

Subgroup analyses showed that environmen-

tal temperature and region of the country, but 

not sex, age at enrollment, body-mass index, edu-

cation, or concentration of PM2.5, significantly 

modified the effects of ozone on the risk of 

death from respiratory causes (Table 4).

Figure 2 illustrates the shape of the relation 

between exposure to ozone and death from re-

Table 1. (Continued.)

Variable
Entire Cohort
(N = 448,850) Concentration of Ozone 

33.3–53.1 ppb 
(N = 126,206)

53.2–57.4 ppb 
(N = 95,740)

57.5–62.4 ppb 
(N = 106,545)

62.5–104.0 ppb 
(N = 120,359)

Ecologic risk factors∥

Nonwhite race (%) 11.6±16.8 10.5±16.4 9.3±15.5 10.2±16.0 15.9±18.3

Home with air conditioning (%) 62.3±27.0 55.4±31.2 59.4±24.0 65.3±24.8 69.1±24.3

High-school education or greater (%) 51.7±8.2 53.5±7.9 52.4±7.5 50.8±7.2 50.0±9.5

Unemployment rate (%) 11.7±3.1 12.1±3.4 11.3±2.6 11.3±2.9 11.8±3.4

Gini coefficient of income inequality** 0.37±0.04 0.37±0.05 0.37±0.04 0.37±0.04 0.38±0.04

Proportion of population with income  
<125% of poverty line 

0.12±0.08 0.11±0.08 0.12±0.08 0.11±0.07 0.13±0.09

Annual household income (thousands  
of dollars)††

20.7±6.6 21.9±7.1 19.8±6.0 21.2±6.7 19.7±6.3

*  MSA denotes metropolitan statistical area, and PM2.5 fine particulate matter consisting of particles that are 2.5 µm or less in aerodynamic 
diameter. Plus–minus values are means ±SD. Because of rounding, percentages may not total 100. All baseline characteristics included in 
the survival model are listed (age, sex, and race were included as stratification factors). The model also includes squared terms for the 
number of cigarettes smoked per day and the number of years of smoking for both current and former smokers and a squared term for 
body-mass index.

†  The body-mass index is the weight in kilograms divided by the square of the height in meters.
‡  Occupational exposure to particulate matter increases with increasing index number. The index was calculated by assigning a relative level 

of exposure to PM2.5 associated with a cohort member’s job and industry. These assignments were performed by industrial hygienists on 
the basis of their knowledge of typical exposure patterns for each occupation and specific job.22

§  Dietary-fat consumption increases with increasing index number. Dietary information from cohort members was used to define the level 
of fat consumption according to five ordered categories.20

¶  Dietary-fiber consumption increases with increasing index number. Dietary information from cohort members was used to define the level 
of fiber consumption according to five ordered categories.23

∥  For the ecologic variables, the model included terms for influences at the level of the average for the metropolitan statistical area and at 
the level of the difference between the value for the ZIP Code of residence and the average for the metropolitan statistical area to repre-
sent between- and within-metropolitan area confounding influence. Some values for ecologic variables and individual variables differ, al-
though they appear to measure the same risk factor. For example, for the entire cohort, the percentage of whites as listed under individual 
variables is 93.7, whereas the percentage of nonwhites as listed under ecologic variables is 11.6±16.8. This apparent contradiction is ex-
plained by the fact that the former is an exact figure based on the individual reports of the study participants in the CPS II questionnaire, 
whereas the latter is a mean (±SD) for the population based on Census estimates for each metropolitan statistical area.

** The Gini coefficient is a statistical dispersion measure used to calculate income inequality. The coefficient ranges from 0 to 1, with 0 indi-
cating an equal distribution of income and 1 indicating that one person has all the income and everyone else has no income.20 A coeffi-
cient of 0.37 indicates that on average there is a measurable inequality in the distribution of income among the different income groups 
within the MSAs.

†† Average household incomes for the cohort and for each quartile of ozone concentration were calculated from the median household in-
come for the metropolitan statistical area.
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spiratory causes. There was limited evidence that 

a threshold model specification improved model 

fit as compared with a nonthreshold linear model 

(P = 0.06) (Table 3S in the Supplementary Ap-

pendix).

Because air-pollution data from 1977 to 2000 

were averaged, exposure values for persons who 

died during this period are based partly on data 

that were obtained after death had occurred. 

Further investigation by dividing this interval into 

specific time windows of exposure revealed no 

significant difference between the effects of ear-

lier and later time windows within the period of 

follow-up. Allowing for a 10-year period of expo-

sure to ozone (5 years of follow-up and 5 years 

before the follow-up period) did not appreciably 

alter the risk estimates (Table 4S in the Supple-

mentary Appendix). Thus, when exposure values 

were matched more closely to the follow-up pe-

riod and when exposure values were based on 

data obtained before the deaths, there was little 

change in the results.

Discussion

Our principal finding is that ozone and PM2.5 

contributed independently to increased annual 

mortality rates in this large, U.S. cohort study in 

analyses that controlled for many individual and 

ecologic risk factors. In two-pollutant models that 

Table 2. Number of Deaths in the Entire Cohort and According to Exposure to Ozone.

Cause of Death
Entire Cohort
(N = 448,850) Concentration of Ozone 

33.3–53.1 ppb 
(N = 126,206)

53.2–57.4 ppb 
(N = 95,740)

57.5–62.4 ppb 
(N = 106,545)

62.5–104.0 ppb 
(N = 120,359)

number of deaths

Any cause 118,777 32,957 25,642 27,782 32,396

Cardiopulmonary 58,775 16,328 12,621 13,544 16,282

Cardiovascular 48,884 13,605 10,657 11,280 13,342

Ischemic heart disease 27,642 7,714 6,384 6,276 7,268

Respiratory 9,891 2,723 1,964 2,264 2,940

 

Table 3. Relative Risk of Death Attributable to a 10-ppb Change in the Ambient Ozone Concentration.*

Cause of Death Single-Pollutant Model† Two-Pollutant Model‡

Ozone (96 MSAs) Ozone (86 MSAs) PM2.5 (86 MSAs) Ozone (86 MSAs) PM2.5 (86 MSAs)

relative risk (95% CI)

Any cause 1.001 (0.996–1.007) 1.001 (0.996–1.007) 1.048 (1.024–1.071) 0.989 (0.981–0.996) 1.080 (1.048–1.113)

Cardiopulmonary 1.014 (1.007–1.022) 1.016 (1.008–1.024) 1.129 (1.094–1.071) 0.992 (0.982–1.003) 1.153 (1.104–1.204)

Respiratory 1.029 (1.010–1.048) 1.027 (1.007–1.046) 1.031 (0.955–1.113) 1.040 (1.013–1.067) 0.927 (0.836–1.029)

Cardiovascular 1.011 (1.003–1.023) 1.014 (1.005–1.023) 1.150 (1.111–1.191) 0.983 (0.971–0.994) 1.206 (1.150–1.264)

Ischemic heart disease 1.015 (1.003–1.026) 1.017 (1.006–1.029) 1.211 (1.156–1.268) 0.973 (0.958–0.988) 1.306 (1.226–1.390)

* MSA denotes metropolitan statistical area, and PM2.5 fine particulate matter consisting of particles that are 2.5 µm or less in aerodynamic 
diameter. Ozone concentrations were measured from April to September during the years from 1977 to 2000, with follow-up from 1982 to 
2000; changes in the concentration of PM2.5 of 10 µg per cubic meter were recorded for members of the cohort in 1999 and 2000. These 
models are adjusted for all the individual and ecologic risk factors listed in Table 1. For the ecologic variables, the model included terms for 
influences at the level of the average for the metropolitan statistical area and at the level of the difference between the value for the ZIP 
Code of residence and the average for the metropolitan statistical area to represent between- and within-metropolitan area confounding in-
fluence. The risk of death was stratified according to age (in years), sex, and race.

† The single-pollutant models were based on 96 metropolitan statistical areas for which information on ozone was available and 86 metropoli-
tan statistical areas for which information on both ozone and fine particulate matter was available.

‡ The two-pollutant models were based on 86 metropolitan statistical areas for which information on both ozone and fine particulate matter 
was available.
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included ozone and PM2.5, ozone was significant-

ly associated only with death from respiratory 

causes.

For every 10-ppb increase in exposure to 

ozone, we observed an increase in the risk of 

death from respiratory causes of about 2.9% in 

single-pollutant models and 4% in two-pollutant 

models. Although this increase may appear mod-

erate, the risk of dying from a respiratory cause 

is more than three times as great in the metro-

politan areas with the highest ozone concentra-

tions as in those with the lowest ozone concen-

trations. The effects of ozone on the risk of 

death from respiratory causes were insensitive to 

adjustment for individual, neighborhood, and 

metropolitan-area confounders or to differences 

in multilevel-model specifications.

There is biologic plausibility for a respiratory 

effect of ozone. In laboratory studies, ozone can 

increase airway inflammation24 and can worsen 

pulmonary function and gas exchange.25 In ad-

dition, exposure to elevated concentrations of 

tropospheric ozone has been associated with 

numerous adverse health effects, including the 

induction26 and exacerbation27,28 of asthma, pul-

monary dysfunction,29,30 and hospitalization for 

respiratory causes.31

Despite these observations, previous studies 

linking long-term exposure to ozone with death 

have been inconclusive. One cohort study con-

ducted in the Midwest and eastern United States 

reported an inverse but nonsignificant associa-

tion between ozone concentrations and mortali-

ty.1 Subsequent reanalyses of this study replicated 

these findings but also suggested a positive as-

sociation with exposure to ozone during warm 

seasons.3 A study of approximately 6000 non-

smoking Seventh-Day Adventists living in South-

ern California showed elevated risks among men 

after long-term exposure to ozone,11 but this 

finding was based on limited mortality data.

Previous studies using the CPS II cohort have 

also produced mixed results for ozone. An ear-

lier examination based on a large sample of more 

than 500,000 people from 117 metropolitan areas 

and 8 years of follow-up indicated nonsignifi-

cant results for the relation between ozone and 

death from any cause and a significant inverse 

association between ozone and death from lung 

cancer. A positive association between death from 

cardiopulmonary causes and summertime expo-

sure to ozone was observed in single-pollutant 

Table 4. Relative Risk of Death from Respiratory Causes Attributable  
to a 10-ppb Change in the Ambient Ozone Concentration, Stratified 
According to Selected Risk Factors.*

Stratification Variable

% of 
Subjects  

in Stratum
Relative Risk

(95% CI)

P Value  
of Effect 

Modification

Sex 0.11

Male 43 1.01 (0.99–1.04)

Female 57 1.04 (1.03–1.07)

Age at enrollment (yr) 0.74

<50 26 1.00 (0.90–1.11)

50–65 54 1.03 (1.01–1.06)

>65 20 1.02 (1.00–1.05)

Education 0.48

High school or less 43 1.02 (1.00–1.05)

Beyond high school 57 1.03 (1.01–1.06)

Body-mass index† 0.96

<25.0 53 1.03 (1.01–1.06)

25.0–29.9 36 1.03 (0.99–1.06)

≥30.0 11 1.03 (0.96–1.10)

PM2.5 (µg/m3)‡ 0.38

<14.3 44 1.05 (1.01–1.09)

>14.3 56 1.03 (1.00–1.05)

Region§ 0.05

Northeast 24.8 0.99 (0.92–1.07)

Industrial Midwest 29.7 1.00 (0.91–1.09)

Southeast  21.0 1.12 (1.05–1.19)

Upper Midwest 5.2 1.14 (0.68–1.90)

Northwest 7.7 1.06 (1.00–1.13)

Southwest 3.9 1.21 (1.04–1.40)

Southern California 7.8 1.01 (0.96–1.07)

External temperature (°C)‡¶ 0.01

<23.3 24 0.96 (0.90–1.01)

>23.3 to <25.4 29 0.97 (0.87–1.08)

>25.4 to <28.7 22 1.04 (0.92–1.16)

>28.7 25 1.05 (1.03–1.08)

* PM2.5 denotes fine particulate matter consisting of particles that are 2.5 µm 
or less in aerodynamic diameter. Ozone exposures for the cohort were mea-
sured from April to September during the years from 1977 to 2000, with follow-
up from 1982 to 2000, with adjustment for individual risk factors, and with 
baseline hazard function stratified according to age (single-year groupings), 
sex, and race. These analyses are based on the single-pollutant model for ozone 
shown in Table 3. Because of rounding, percentages may not total 100.

† The body-mass index is the weight in kilograms divided by the square of the 
height in meters.

‡ Stratum cutoff is based on the median of the distribution at the metropolitan-
area level, not at the subject level.

§ Definitions of regions are those used by the Environmental Protection Agency.3

¶ External temperature is calculated as the average daily maximum temperature 
recorded between April and September from 1977 to 2000.
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models, but the association with ozone was non-

significant in two-pollutant models.3 Further 

analyses based on 16 years of follow-up in 134 

cities produced similarly elevated but nonsig-

nificant associations that were suggestive of ef-

fects of summertime (July to September) expo-

sure to ozone on death from cardiopulmonary 

causes.5

The increase in deaths from respiratory causes 

with increasing exposure to ozone may represent 

a combination of short-term effects of ozone on 

susceptible subjects who have influenza or pneu-

monia and long-term effects on the respiratory 

system caused by airway inflammation,24 with 

subsequent loss of lung function in childhood,32 

young adulthood,33,34 and possibly later life.35 If 

exposure to ozone accelerates the natural loss of 

adult lung function with age, those exposed to 

higher concentrations of ozone would be at great-

er risk of dying from a respiratory-related syn-

drome.

In our two-pollutant models, the adjusted esti-

mates of relative risk for the effect of ozone on 

the risk of death from cardiovascular causes were 

significantly less than 1.0, seemingly suggesting 

a protective effect. Such a beneficial influence of 

ozone, however, is unlikely from a biologic stand-

point. The association of ozone with cardiovas-

cular end points was sensitive to adjustment for 

exposure to PM2.5, making it difficult to deter-

mine precisely the independent contributions of 

these copollutants to the risk of death. There 

was notable collinearity between the concentra-

tions of ozone and PM2.5.

Furthermore, measurement at central moni-

tors probably represents population exposure to 

PM2.5 more accurately than it represents expo-

sure to ozone. Ozone concentration tends to vary 

spatially within cities more than does PM2.5 con-

centration, because of scavenging of ozone by 

nitrogen oxide near roadways.36 In the presence of 

a high density of local traffic, the measurement 

error is probably higher for exposure to ozone 

than for exposure to PM2.5. The effects of ozone 

could therefore be confounded by the presence of 

PM2.5 because of collinearity between the mea-

surements of the two pollutants and the higher 

precision of measurements of PM2.5.
37

Measurements of PM2.5 were available only 

for the end of the study follow-up period (1999 

and 2000). Widespread collection of these data 

began only after the EPA adopted regulatory lim-

its on such particulates in 1997. Since particu-

late air pollution has probably decreased in most 

metropolitan areas during the follow-up interval 

of our study, it is likely that we have underesti-

mated the effect of PM2.5 in our analysis.

A limitation of our study is that we were not 

able to account for the geographic mobility of 

the population during the follow-up period. We 

had information on home addresses for the CPS 

II cohort only at the time of initial enrollment in 

1982 and 1983. Census data indicate that during 

the interval between 1982 and 2000, approxi-

mately 2 to 3% of the population moved from 

one state to another annually (with the highest 

rates in an age group younger than that of our 

study population).38 However, any bias due to a 

failure to account for geographic mobility is like-

ly to have attenuated, rather than exaggerated, 

the effects of ozone on mortality.

In summary, we investigated the effect of tro-

pospheric ozone on the risk of death from any 

cause and cause-specific death in a large cohort, 

using data from 96 metropolitan statistical areas 

across the United States and controlling for the 

effect of particulate air pollutants. We were un-

able to detect a significant effect of exposure to 

ozone on the risk of death from cardiovascular 

causes when particulates were taken into ac-

count, but we did demonstrate a significant ef-

fect of exposure to ozone on the risk of death 

from respiratory causes.

0.2

0.1

0.0

40 60 80 100

Figure 2. Exposure–Response Curve for the Relation between Exposure  
to Ozone and the Risk of Death from Respiratory Causes.

The curve is based on a natural spline with 2 df estimated from the residual 
relative risk of death within a metropolitan statistical area (MSA) according 
to a random-effects survival model. The dashed lines indicate the 95% con-
fidence interval of fit, and the hash marks indicate the ozone levels of each 
of the 96 MSAs. 
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