

NATIONAL ENERGY TECHNOLOGY LABORATORY

Life Cycle Greenhouse Gas Analysis of Natural Gas Extraction & Delivery in the United States

Timothy J. Skone, P.E.

Office of Strategic Energy Analysis and Planning

May 12, 2011 (Updated May 23, 2011)

U.S. DEPARTMENT OF ENERGY

Overview

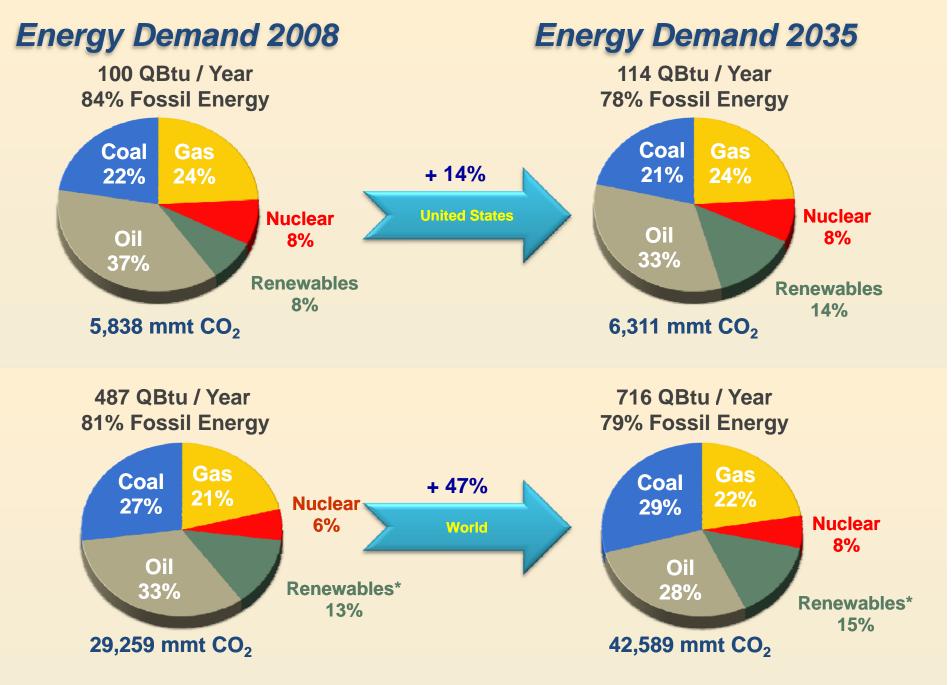
- 1. Who is NETL?
- 2. What is the role of natural gas in the United States?
- 3. Who uses natural gas in the U.S.?
- 4. Where does natural gas come from?
- 5. What is the life cycle GHG footprint of domestic natural gas extraction and delivery to large end-users?
- 6. How does natural gas power generation compare to coal-fired power generation on a life cycle GHG basis?
- 7. What are the opportunities for reducing GHG emissions?

Question #1:Who is NETL?

National Energy Technology Laboratory

MISSION

Advancing energy options to fuel our economy, strengthen our security, and improve our environment


Oregon

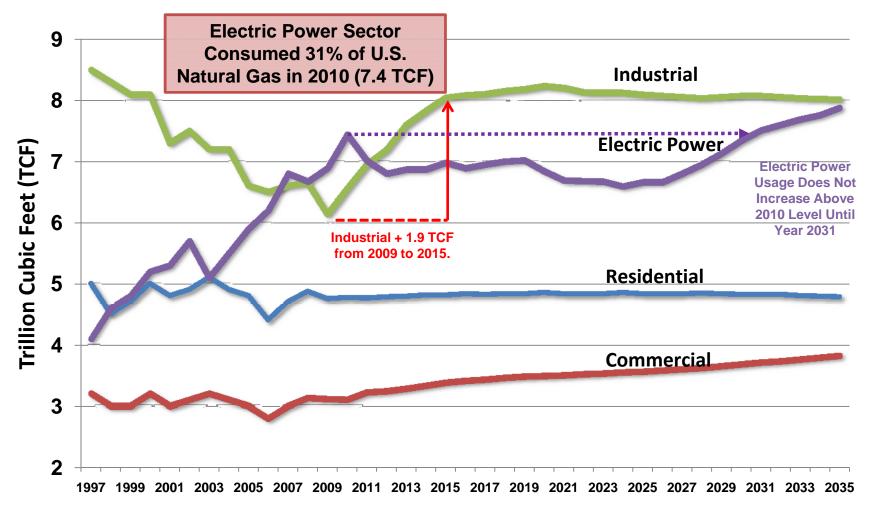
Pennsylvania

West Virginia

Question #2:

What is the role of natural gas in the United States?

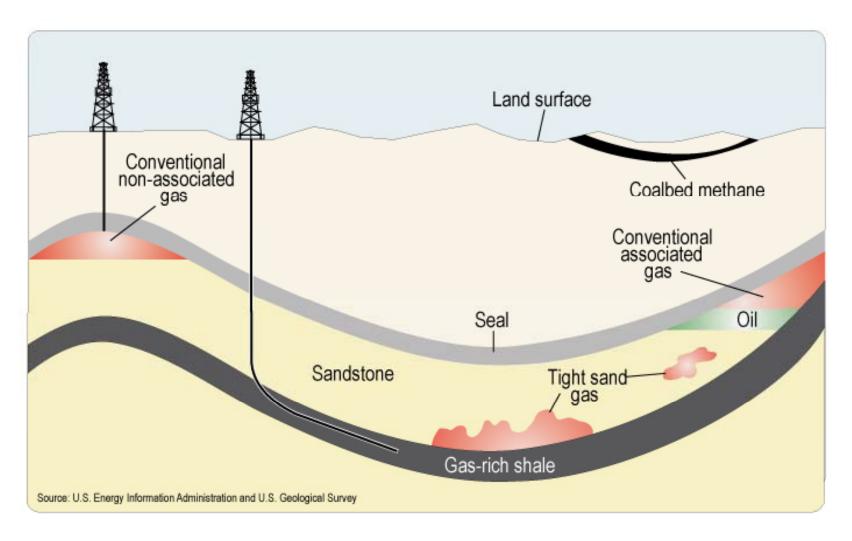
Sources: U.S. data from EIA, Annual Energy Outlook 2011; World data from IEA, World Energy Outlook 2010, Current Policies Scenario


^{*} Primarily traditional biomass, wood, and waste.

Question #3:

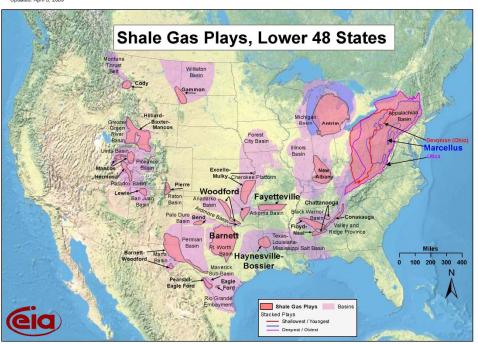
Who uses natural gas in the United States?

Domestic Natural Gas Consumption

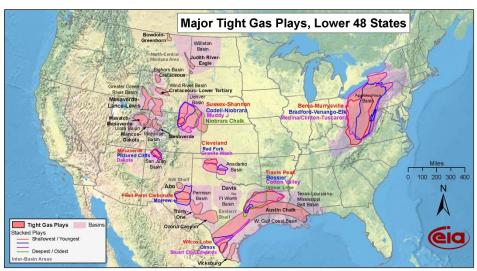

Sectoral Trends and Projections: 2010 Total Consumption = 23.8 TCF

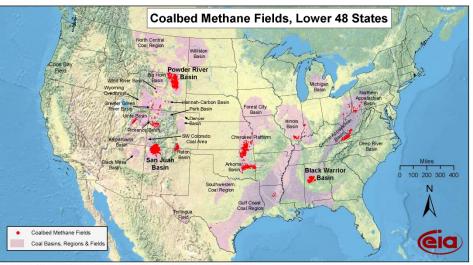


+1.9 TCF Resurgence in Industrial Use of Natural Gas by 2015 Exceeds the Net Incremental Supply;
No Increase in Natural Gas Use for Electric Power Sector Until 2031


Question #4:Where does natural gas come from?

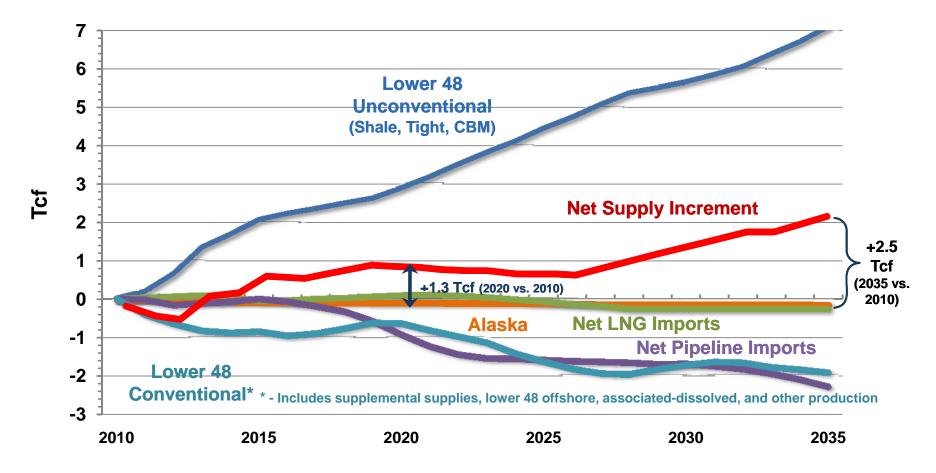
Schematic Geology of Onshore Natural Gas Resources




Source: Energy Information Administration based on data from HPDI, IN Geological Survey, USGS Updated: April 8, 2009

Source: Energy Information Administration based on data from various published studies, Updated: March 10, 2010

Source: Energy Information Administration based on data from various published studies Updated: June 6, 2010

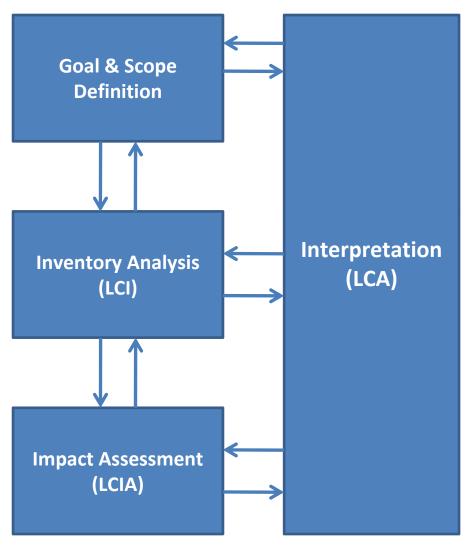


Source: Energy Information Administration based on data from USGS and various published studies Updated: April 8, 2009

EIA Natural Gas Maps

Sources of Incremental Natural Gas Supply

(Indexed to 2010)



Unconventional Production Growth Offset by Declines in Conventional Production and Net Pipeline Imports;
1.3 Tcf Increment by 2020 Does Not Support Significant Coal Generation Displacement

Question #5:

What is the life cycle GHG footprint of domestic natural gas extraction and delivery to large end-users?

Overview: Life Cycle Assessment Approach

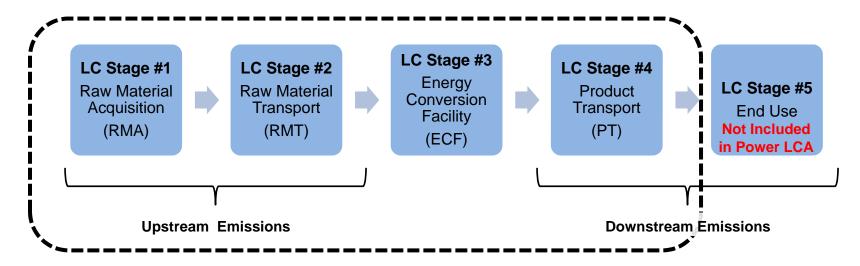
The Type of LCA Conducted Depends on Answers to these Questions:

- 1. What Do You Want to Know?
- 2. How Will You Use the Results?

International Organization for Standardization (ISO) for LCA

- ISO 14040:2006 Environmental Management – Life Cycle Assessment – Principles and Framework
- ISO 14044 Environmental Management Life Cycle Assessment – Requirements and Guidelines
- ISO/TR 14047:2003 Environmental Management – Life Cycle Impact Assessment – Examples of Applications of ISO 14042
- ISO/TS 14048:2002 Environmental
 Management Life Cycle Assessment –
 Data Documentation Format

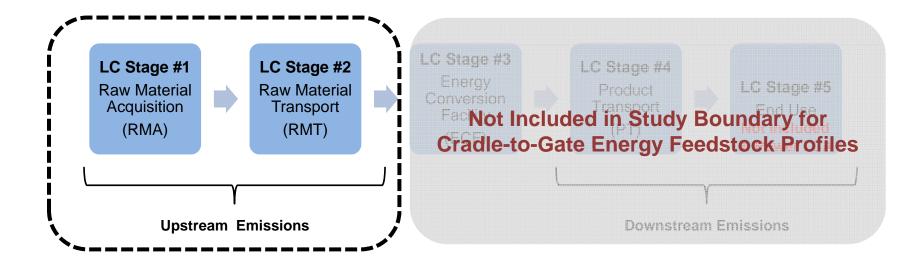
Source: ISO 14040:2006, Figure 1 - Stages of an LCA (reproduced)


Overview: Life Cycle Assessment Approach

The Type of LCA Conducted Depends on Answers to these Questions:

- 1. What Do You Want to Know?
 - □ The GHG footprint of natural gas, lower 48 domestic average, extraction, processing, and delivery to a large end-user (e.g., power plant)
 - The comparison of natural gas used in a baseload power generation plant to baseload coal-fired power generation on a lbs CO₂e/MWh basis
- 2. How Will You Use the Results?
 - Inform research and development activities to reduce the GHG footprint of both energy feedstock extraction and power production in existing and future operations

NETL Life Cycle Analysis Approach

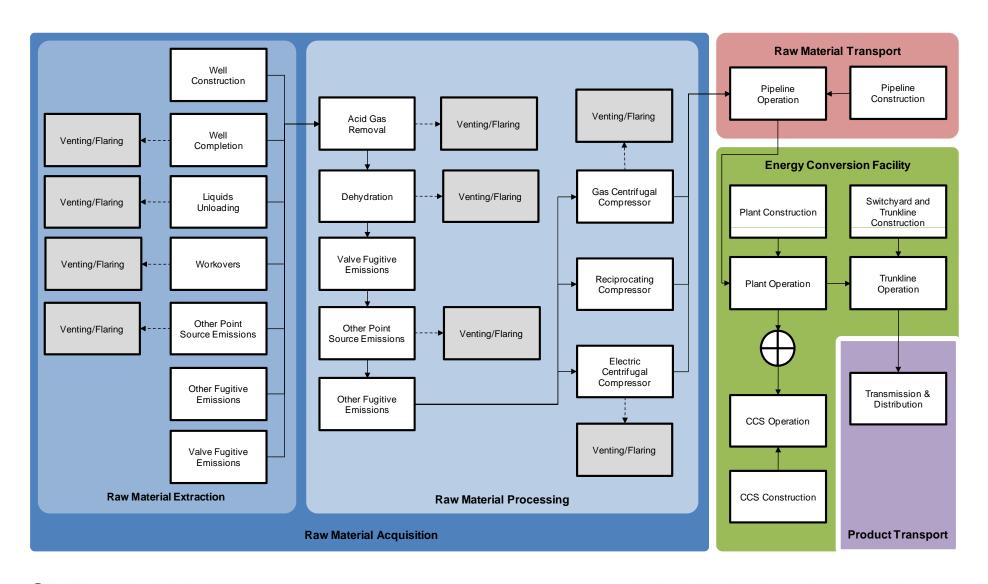

 Compilation and evaluation of the inputs, outputs, and the potential environmental impacts of a product or service throughout its life cycle, from raw material acquisition to the final disposal

- The ability to compare different technologies depends on the functional unit (denominator); for power LCA studies:
 - 1 MWh of electricity delivered to the end user

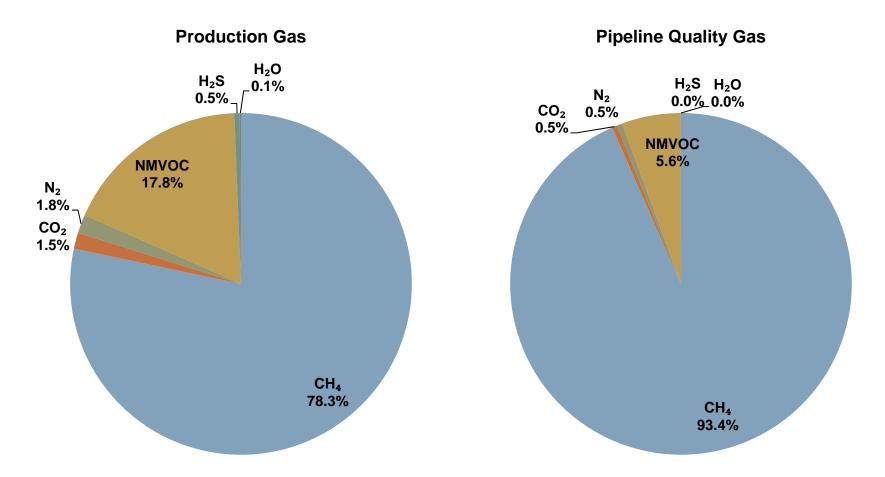
NETL Life Cycle Analysis Approach for Natural Gas Extraction and Delivery Study

 The study boundary for "domestic natural gas extraction and delivery to large end-users" is represented by Life Cycle (LC) Stages #1 and #2 only.

- Functional unit (denominator) for energy feedstock profiles is:
 - 1 MMBtu of feedstock delivered to end user
 (MMBtu = million British thermal units)


NETL Life Cycle Study Metrics

- Greenhouse Gases
 - CO₂, CH₄, N₂O, SF₆
- Criteria Air Pollutants
 - NO_x, SO_x, CO, PM10, Pb
- Air Emissions Species of Interest
 - Hg, NH₃, radionuclides
- Solid Waste
- Raw Materials
 - Energy Return on Investment
- Water Use
 - Withdrawn water, consumption, water returned to source
 - Water Quality
- Land Use
 - Acres transformed, greenhouse gases


Converted to Global Warming Potential using IPCC 2007 100-year CO₂ equivalents

$$CO_2 = 1$$

 $CH_4 = 25$
 $N_2O = 298$
 $SF_6 = 22,800$

NETL Life Cycle Model for Natural Gas

Natural Gas Composition by Mass

Carbon content (75%) and energy content (1,027 btu/cf) of pipeline quality gas is very similar to raw production gas (within 99% of both values)

Natural Gas Extraction Modeling Properties

Property	Units	Onshore Conventional Well	Onshore Associated Well	Offshore Conventional Well	Tight Sands - Vertical Well	Barnett Shale - Horizontal Well	Coal Bed Methane (CBM) Well
Natural Gas Source							
Contribution to 2009 Natural Gas Mix	Percent	23%	7%	13%	32%	16%	9%
Estimated Ultimate Recovery (EUR), Production Gas	BCF/well	8.6	4.4	67.7	1.2	3.0	0.2
Production Rate (30-yr average)	MCF/day	782	399	6,179	110	274	20
Natural Gas Extraction Well							
Flaring Rate at Extraction Well Location	Percent	51%	51%	51%	15%	15%	51%
Well Completion, Production Gas (prior to flaring)	MCF/completion	47	47	47	4,657	11,643	63
Well Workover, Production Gas (prior to flaring)	MCF/workover	3.1	3.1	3.1	4,657	11,643	63
Well Workover, Number per Well Lifetime	Workovers/well	1.1	1.1	1.1	3.5	3.5	3.5
Liquids Unloading, Production Gas (prior to flaring)	MCF/episode	23.5	n/a	23.5	n/a	n/a	n/a
Liquids Unloading, Number per Well Lifetime	Episodes/well	930	n/a	930	n/a	n/a	n/a
Pneumatic Device Emissions, Fugitive	lb CH₄/MCF	0.11	0.11	0.0001	0.11	0.11	0.11
Other Sources of Emissions, Point Source (prior to flaring)	lb CH₄/MCF	0.003	0.003	0.002	0.003	0.003	0.003
Other Sources of Emissions, Fugitive	lb CH₄/MCF	0.043	0.043	0.010	0.043	0.043	0.043

Natural Gas Processing Plant Modeling Properties

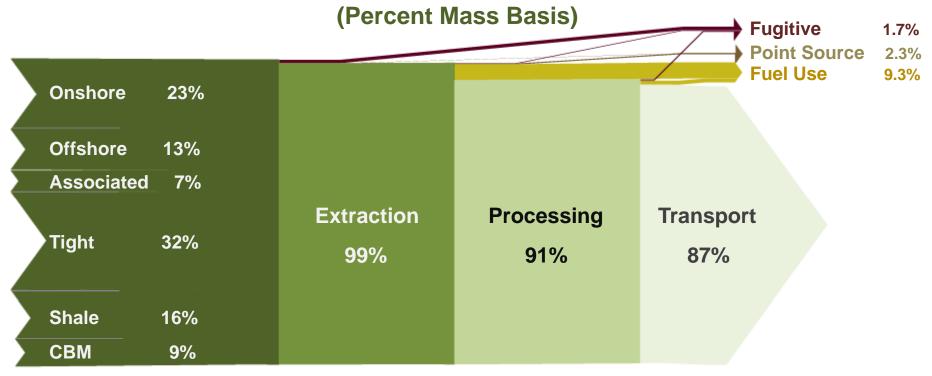
Property	Units	Onshore Conventional Well	Onshore Associated Well	Offshore Conventional Well	Tight Sands - Vertical Well	Barnett Shale - Horizontal Well	Coal Bed Methane (CBM) Well	
Acid Gas Removal (AGR) and CO ₂ Removal Unit								
Flaring Rate for AGR and CO ₂ Removal Unit	Percent			10	0%			
Methane Absorbed into Amine Solution	lb CH₄/MCF			0.	04			
Carbon Dioxide Absorbed into Amine Solution	lb CO ₂ /MCF			0.	56			
Hydrogen Sulfide Absorbed into Amine Solution	lb H ₂ S/MCF			0.	21			
NMVOC Absorbed into Amine Solution	lb NMVOC/MCF			6.9	59			
Glycol Dehydrator Unit	1							
Flaring Rate for Dehydrator Unit	Percent			10	0%			
Water Removed by Dehydrator Unit	lb H₂O/MCF			0.0)45			
Methane Emission Rate for Glycol Pump & Flash Separator	lb CH ₄ /MCF	0.0003						
Pneumatic Devices & Other Sources of Emission	s							
Flaring Rate for Other Sources of Emissions	Percent	100%						
Pneumatic Device Emissions, Fugitive	lb CH₄/MCF	0.0003						
Other Sources of Emissions, Point Source (prior to flaring)	lb CH₄/MCF	0.02						
Other Sources of Emissions, Fugitive	lb CH₄/MCF			0.	03			

Natural Gas Processing Plant Modeling Properties

Property	Units	Onshore Conventional Well	Onshore Associated Well	Offshore Conventional Well	Tight Sands - Vertical Well	Barnett Shale - Horizontal Well	Coal Bed Methane (CBM) Well
Natural Gas Compression at Gas Plant							
Compressor, Gas-powered Combustion, Reciprocating	Percent	100%	100%		100%	75%	100%
Compressor, Gas-powered Turbine, Centrifugal	Percent			100%			
Compressor, Electrical, Centrifugal	Percent					25%	

Natural Gas Transmission Modeling Properties

Property	Units	Onshore Conventional Well	Onshore Associated Well	Offshore Conventional Well	Tight Sands - Vertical Well		Coal Bed Methane (CBM) Well		
Natural Gas Emissions on Transmission Infrastru	Natural Gas Emissions on Transmission Infrastructure								
Pipeline Transport Distance (national average)	Miles			60	04				
Transmission Pipeline Infrastructure, Fugitive	lb CH ₄ /MCF-Mile	0.0003							
Transmission Pipeline Infrastructure, Fugitive (per 604 miles)	lb CH₄/MCF	0.18							
Natural Gas Compression on Transmission Infras	tructure								
Distance Between Compressor Stations	Miles	75							
Compression, Gas-powered Reciprocating	Percent	29%							
Compression, Gas-powered Centrifugal	Percent	64%							
Compression, Electrical Centrifugal	Percent	7%							

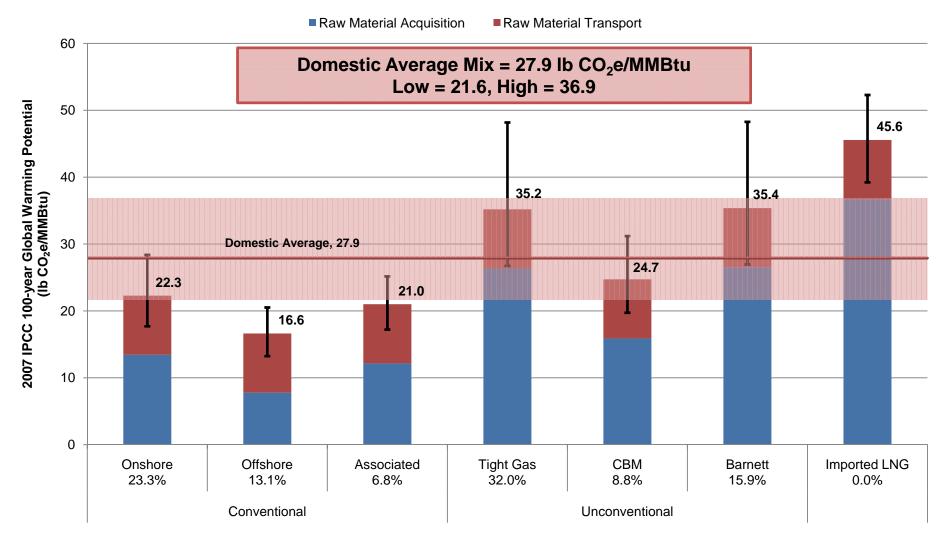

Uncertainty Analysis Modeling Parameters

Parameter	Units	Scenario	Onshore Conventional Well	Onshore Associated Well	Offshore Conventional Well	Tight Sands - Vertical Well	Barnett Shale - Horizontal Well	Coal Bed Methane (CBM) Well
		Low	403 (-49%)	254 (-36%)	3,140 (-49%)	77 (-30%)	192 (-30%)	14 (-30%)
Production Rate	MCF/day	Nominal	782	399	6,179	110	274	20
		High	1,545 (+97%)	783 (+96%)	12,284 (+99%)	142 (+30%)	356 (+30%)	26 (+30%)
		Low	41% (-20%)	41% (-20%)	41% (-20%)	12% (-20%)	12% (-20%)	41% (-20%)
Flaring Rate at Well	%	Nominal	51%	51%	51%	15%	15%	51%
		High	61% (+20%)	61% (+20%)	61% (+20%)	18% (+20%)	18% (+20%)	61% (+20%)
		Low	483 (-20%)	483 (-20%)	483 (-20%)	483 (-20%)	483 (-20%)	483 (-20%)
Pipeline Distance	miles	Nominal	604	604	604	604	604	604
		High	725 (+20%)	725 (+20%)	725 (+20%)	725 (+20%)	725 (+20%)	725 (+20%)

Error bars reported are based on setting each of the three parameters above to the values that generate the lowest and highest result.

Note: "Production Rate" and "Flaring Rate at Well" have an inverse relationship on the effect of the study result. For example to generate the lower bound on the uncertainty range both "Production Rate" and "Flaring Rate Well" were set to "High" and "Pipeline Distance" was set to "Low".

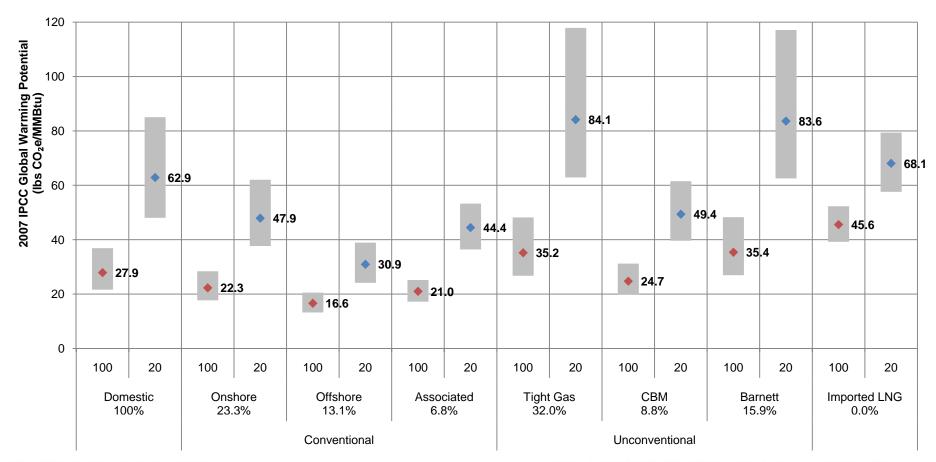
Accounting for Natural Gas from Extraction thru Delivery to a Large End-User



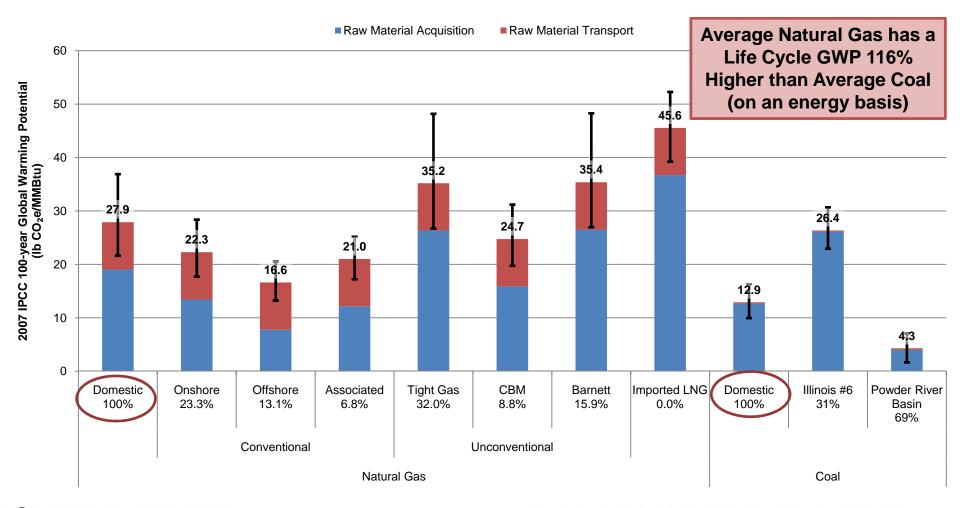
Natural Gas	Raw Materia	al Acquisition	Raw Material	Cradle-to-Gate
Resource Table	Extraction	Processing	Transport	Total:
Extracted from Ground	100.0%	n/a	n/a	100.0%
Fugitive Losses	1.2%	0.1%	0.5%	1.7%
Point Source Losses (Vented or Flared)	0.1%	2.3%	0.0%	2.3%
Fuel Use	0.0%	7.7%	1.6%	9.3%
Delivered to End User	n/a	n/a	86.7%	86.7%

13.3% of Natural Gas Extracted from the Earth is Consumed for Fuel Use, Flared, or Emitted to the Atmosphere (point source or fugitive)

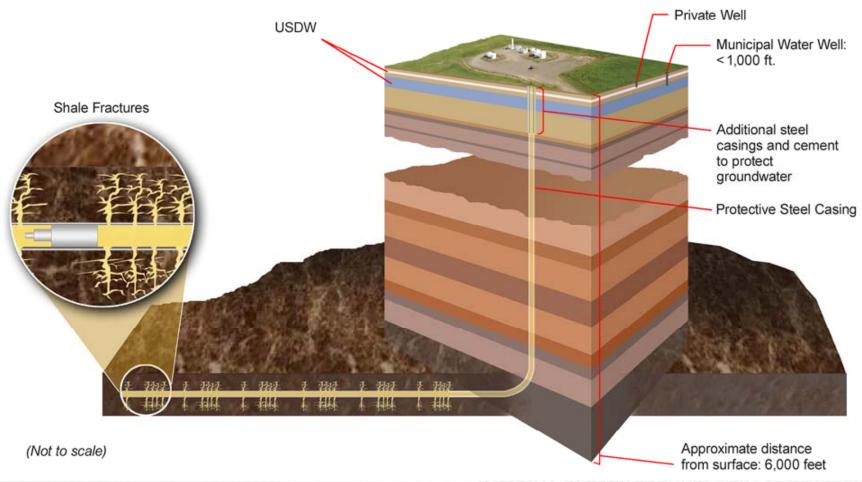
Of this, 70% is Used to Power Equipment


Life Cycle GHG Results for Average Natural Gas Extraction and Delivery to a Large End-User

Life Cycle GHG Results for Average Natural Gas Extraction and Delivery to a Large End-User

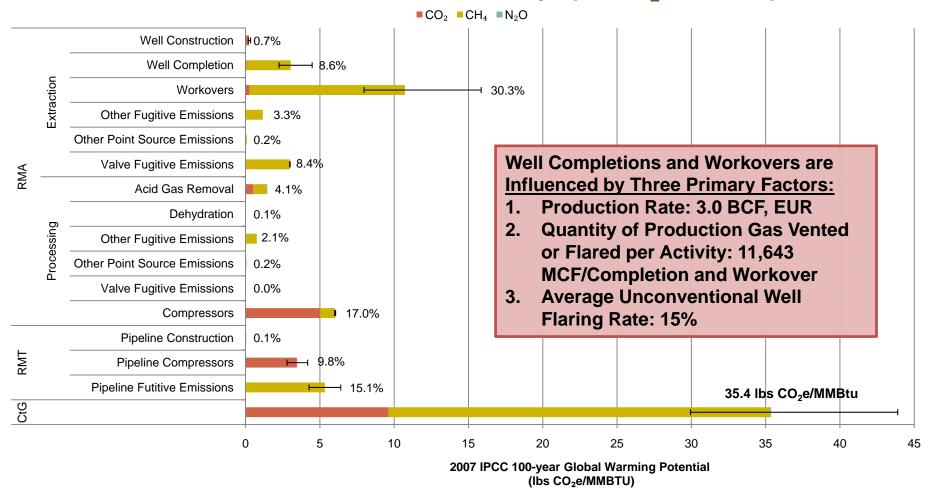

Comparison of 2007 IPCC GWP Time Horizons:

100-year Time Horizon: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$ 20-year Time Horizon: $CO_2 = 1$, $CH_4 = 72$, $N_2O = 289$

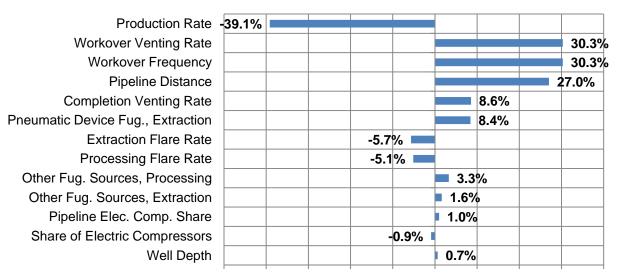


Life Cycle GHG Results for "Average" Natural Gas Extraction and Delivery to a Large End-User

Comparison of Natural Gas and Coal Energy Feedstock GHG Profiles



A Deeper Look at Unconventional Natural Gas Extraction via Horizontal Well, Hydraulic Fracturing (the Barnett Shale Model)


NETL Upstream Natural Gas Profile: Barnett Shale: Horizontal Well, Hydraulic Fracturing

GWP Result: IPCC 2007, 100-yr (lb CO₂e/MMBtu)

NETL Upstream Natural Gas Profile: Barnett Shale: Horizontal Well, Hydraulic Fracturing

Sensitivity of Model Result to Changes in Parameter Values

Default Value	Units
11,508	lb/day
489,023	lb/episode
0.118	episodes/yr
604	miles
489,023	lb/episode
0.001210	lb fugitives/lb extracted gas
15.0	%
100	%
0.001119	lb fugitives/lb extracted gas
0.001089	lb fugitives/lb processed gas
7	%
25	%
13,000	feet

-50% -40% -30% -20% -10% 0% 10% 20% 30% 40%

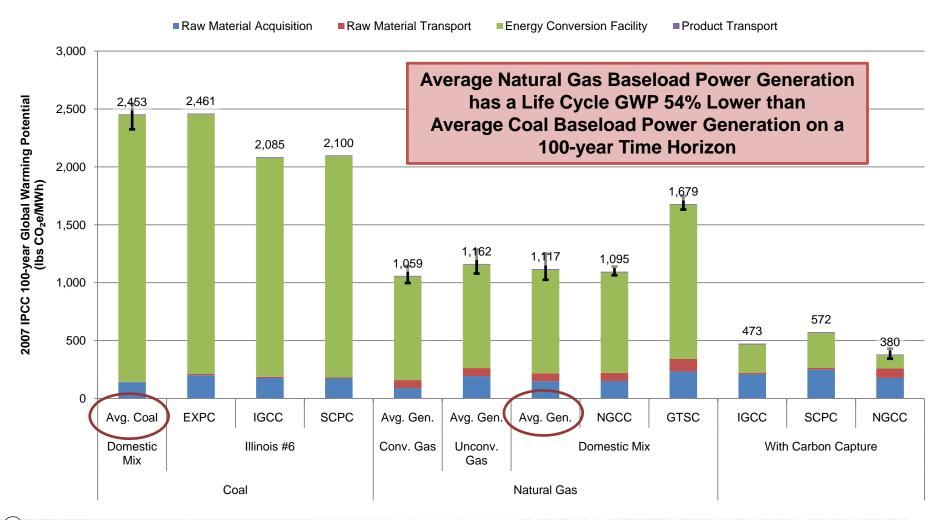
"0%" = 35.4 lb CO₂e/MMBtu Delivered; IPCC 2007, 100-yr Time Horizon

Percentages above are relative to a unit change in parameter value; all parameters are changed by the same amount, allowing comparison of the magnitude of change to the result across all parameters.

Example: A 5% increase in Production Rate from 11,508 lb/day to 12,083 lb/day would result in a 1.96% (5% of 39.1%) *decrease* in cradle-to-gate GWP, from 35.4 to 34.7 lbs CO₂e/MMBtu. A 5% increase in Well Depth to 13,650 feet results in a 0.035% increase to 35.41 – the result is less sensitive to changes in Well Depth than Production Rate.

Question #6:

How does natural gas power generation compare to coal-fired power generation on a life cycle GHG basis?

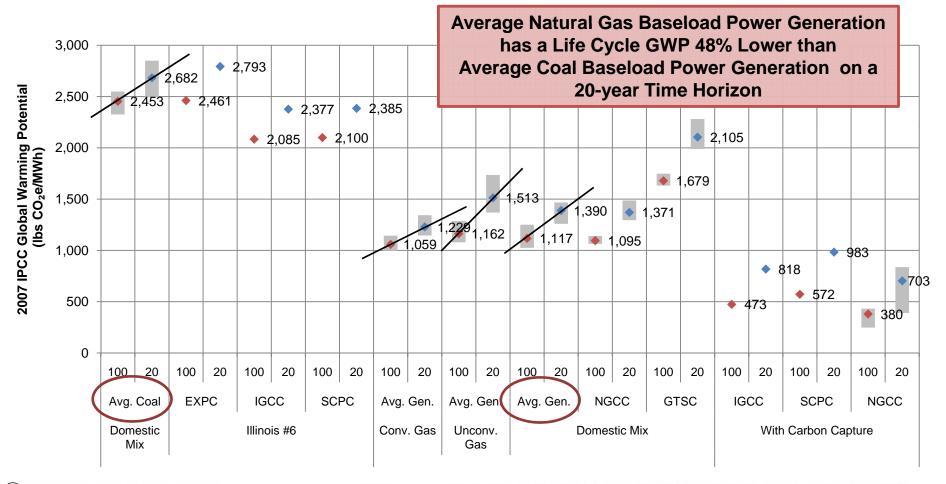

Power Technology Modeling Properties

Plant Type	Plant Type Abbreviation	Fuel Type	Capacity (MW)	Capacity Factor	Net Plant HHV Efficiency
2009 Average Coal Fired Power Planta	Avg. Coal	Domestic Average	Not Calculated	Not Calculated	33.0%
Existing Pulverized Coal Plant	EXPC	Illinois No. 6	434	85%	35.0%
Integrated Gasification Combined Cycle Plant	IGCC	Illinois No. 6	622	80%	39.0%
Super Critical Pulverized Coal Plant	SCPC	Illinois No. 6	550	85%	36.8%
2009 Average Baseload (>40% CapFac) Natural Gas Plant ^a	Avg. Gen.	Domestic Average	Not Calculated	Not Calculated	47.1%
Natural Gas Combined Cycle Plant	NGCC	Domestic Average	555	85%	50.2%
Gas Turbine Simple Cycle	GTSC	Domestic Average	360	85%	32.6%
Integrated Gasification Combined Cycle Plant with 90% Carbon Capture	IGCC/CCS	Illinois No. 6	543	80%	32.6%
Super Critical Pulverized Coal Plant with 90% Carbon Capture	SCPC/CCS	Illinois No. 6	550	85%	26.2%
Natural Gas Combined Cycle Plant with 90% Carbon Capture	NGCC/CCS	Domestic Average	474	85%	42.8%

^a Net plant higher heating value (HHV) efficiency reported is based on the weighted mean of the 2007 fleet as reported by U.S. EPA, eGrid (2010).

Comparison of Power Generation Technology Life Cycle GHG Footprints

Raw Material Acquisition thru Delivery to End Customer (lb CO₂e/MWh)


NATIONAL ENERGY TECHNOLOGY LABORATORY

Note: EXPC, IGCC, SCPC, and NGCC (combustion) results, with and without CCS, are based on scenario specific modeling parameters; not industry average data.

Comparison of Power Generation Technology Life Cycle GHG Footprints (lbs CO₂e/MWh)

Comparison of 2007 IPCC GWP Time Horizons:

100-year Time Horizon: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$ 20-year Time Horizon: $CO_2 = 1$, $CH_4 = 72$, $N_2O = 289$

35

NATIONAL ENERGY TECHNOLOGY LABORATORY

Study Data Limitations

Data Uncertainty

- Episodic emission factors
- Formation-specific production rates
- Flaring rates (extraction and processing)
- Natural gas pipeline transport distance

Data Availability

- Formation-specific gas compositions (including CH₄, H₂S, NMVOC, and water)
- Effectiveness of green completions and workovers
- Fugitive emissions from around wellheads (between the well casing and the ground)
- GHG emissions from the production of fracing fluid
- Direct and indirect GHG emissions from land use from access roads and well pads
- Gas exploration
- Treatment of fracing fluid
- Split between venting and fugitive emissions from pipeline transport

Question #7:

What are the opportunities for reducing GHG emissions?

Technology Opportunities

- Opportunities for Reducing the GHG Footprint of Natural Gas Extraction and Delivery
 - Reduce emissions from unconventional gas well completions and workovers
 - Better data is needed to properly characterize this opportunity based on basin type, drilling method, and production rate
 - Improve compressor fuel efficiency
 - Reduce pipeline fugitive emissions thru technology and best management practices (collaborative initiatives)
- Opportunities for Reducing the GHG Footprint of Natural Gas and Coal-fired Power Generation
 - Capture the CO₂ at the power plant and sequester it in a saline aquifer or oil bearing reservoir (CO₂-EOR)
 - Improve existing power plant efficiency
 - Invest in advanced power research, development, and demonstration

All Opportunities Need to Be Evaluated on a Sustainable Energy Basis: Environmental Performance, Economic Performance, and Social Performance (e.g., energy reliability and security)

- ALL Consulting. "Coal Bed Methane Primer: New Source of Natural Gas Environmental Implications." 2004.
- American Petroleum Institute (API). "Compendium of Greenhouse Gas Emissions for the Oil and Natural Gas Industry." 2009. http://www.api.org/ehs/climate/new/upload/2009_GHG_COMPENDIUM.pdf (accessed May 18, 2010).
- Argonne National Laboratory. A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane. National Energy Technology Laboratory, 2004.
- —. "Transportation Technology R&D Center, DOE H2A Delivery Analysis." 2008. http://www.transportation.anl.gov/modeling_simulation/h2a_delivery_analysis/ (accessed November 11, 2008).
- Arnold. Surface Production Operations: Design of gas-handling systems and facilities. Houston, Texas: Gulf Professional Publishing, 1999.
- Bylin, Carey, Zachary Schaffer, Vivek Goel, Donald Robinson, Alexandre do N. Campos, and Fernando Borensztein. Designing the Ideal Offshore Platform Methane Mitigation Strategy. Society of Petroleum Engineers, 2010.
- Dennis, Scott M. "Improved Estimates of Ton-Miles." (Journal of Transportation and Statistics) 8, no. 1 (2005).
- Department of Energy (DOE). "Buying an Energy-Efficient Electric Motor." *U.S. Department of Energy, Industrial Technologies Program.* 1996. http://www1.eere.energy.gov/industry/bestpractices/pdfs/mc-0382.pdf (accessed May 18, 2010).

- Energy Information Administration (EIA). Annual Energy Outlook Early Release. U.S. Department of Energy, Energy Information Administration, 2011.
- —. "Federal Gulf 2009: Distribution of Wells by Production Rate Bracket." www.eia.doe.gov. November 2, 2010. http://www.eia.doe.gov/pub/oil_gas/petrosystem/fg_table.html (accessed April 5, 2011).
- —. "Natural Gas Gross Withdrawals and Production." www.eia.doe.gov. March 29, 2011. http://www.eia.doe.gov/dnav/ng/ng_prod_sum_a_EPG0_VRN_mmcf_a.htm (accessed April 5, 2011).
- —. "Personal Communication with Damian Gaul." U.S. Department of Energy, Energy Information Administration, Natural Gas Division, Office of Oil and Gas, May 10, 2010.
- —. United States Total 2008: Distribution of Wells by Production Rate Bracket. U.S. Department of Energy, Energy Information Administration, 2009.
- —. "United States total 2009: Distribution of Wells by Production Rate Bracket." www.eia.doe.gov. December 29, 2010. http://www.eia.doe.gov/pub/oil_gas/petrosystem/us_table.html (accessed April 5, 2011).
- —. "2009 U.S. Greenhouse Gas Inventory Report: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2007." U.S. Environmental Protection Agency. 2009. http://www.epa.gov/climatechange/emissions/usinventoryreport.html.
- Environmental Protection Agency (EPA). Background Technical Support Document Petroleum and Natural Gas Industry. Washington, D.C.: U.S. Environmental Protection Agency, Climate Change Division, 2011.

- Environmental Protection Agency (EPA). "Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources, AP-42." *U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards.* 1995. http://www.epa.gov/ttnchie1/ap42 (accessed May 18, 2010).
- —. *Inventory of Greenhouse Gas Emissions and Sinks: 1990-2008.* Washington, D.C.: U.S. Environmental Protection Agency, 2010.
- —. "Natural Gas STAR Recommended Technologies and Practices Gathering and Processing Sector." U.S. Environmental Protection Agency. 2010b. http://www.epa.gov/gasstar/documents/gathering_and_processing_fs.pdf (accessed March 2, 2011).
- —. "Replacing Glycol Dehydrators with Desiccant Dehydrators." U.S. Environmental Protection Agency. October 2006. http://epa.gov/gasstar/documents/II_desde.pdf (accessed June 1, 2010).
- Government Accountability Office (GAO). Federal Oil and Gas Leases: Opportunities Exist to Capture Vented and Flared Natural Gas, Which Would Increase Royalty Payments and Reduce Greenhouse Gases. GAO-11-34, U.S. Government Accountability Office, 2010.
- —. "Natural Gas Flaring and Venting: Opportunities to Improve Data and Reduce Emissions." U.S. Government Accountability Office. July 2004. http://www.gao.gov/new.items/d04809.pdf (accessed June 18, 2010).
- GE Oil and Gas. Reciprocating Compressors. Florence, Italy: General Electric Company, 2005.
- Hayden, J., and D. Pursell. "The Barnett Shale: Visitors Guide to the Hottest Gas Play in the U.S." *Pickering Energy Partners*. October 2005. http://www.tudorpickering.com/pdfs/TheBarnettShaleReport.pdf (accessed June 14, 2010).

- Houston Advanced Research Center. "Natural Gas Compressor Engine Survey for Gas Production and Processing Facilities, H68 Final Report." *Houston Advanced Research Center.* 2006.
 - http://www.utexas.edu/research/ceer/GHG/files/ConfCallSupp/H068FinalReport.pdf (accessed May 18, 2010).
- Little, Jeff, interview by James Littlefield. Natural Gas Production Analyst (March 10, 2011).
- Lyle, Don. "Shales Revive Oilpatch, Gas Patch." 2011 North American Unconventional Yearbook, November 10, 2011: 2010.
- NaturalGas.org. "Well Completion." *Natural Gas.org.* 2004. http://naturalgas.org/naturalgas/well_completion.asp#liftingwell (accessed July 1, 2010).
- National Energy Technology Laboratory (NETL). Cost and Performance Baseline for Fossil Energy Plants: Volume 1. DOE/NETL-2010/1397, Pittsburgh, Pennsylvania: U.S. Department of Energy, 2010.
- —. Life Cycle Analysis: Existing Pulverized Coal (EXPC) Power Plant. DOE/NETL-403/110809, Pittsburgh, Pennsylvania: U.S. Department of Energy, 2010.
- —. Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant. DOE/NETL-403/110209, Pittsburgh, Pennsylvania: U.S. Department of Energy, 2010.
- —. Life Cycle Analysis: Natural Gas Combined Cycle (NGCC) Power Plant. DOE/NETL-403/110509, Pittsburgh, Pennsylvania: U.S. Department of Energy, 2010
- —. Life Cycle Analysis: Supercritical Pulverized Coal (SCPC) Power Plant. DOE/NETL-403/110609, Pittsburgh, Pennsylvania: U.S. Department of Energy, 2010.

Polasek. Selecting Amines for Sweetening Units. Bryan Research and Engineering, 2006.

Steel Pipes & Tools. Steel Pipe Weight Calculator. 2009. http://www.steel-pipes-tubes.com/steel-pipe-weight-calculator.html (accessed May 1, 2009).

Swindell, Gary S. "Powder River Basin Coalbed Methane Wells – Reserves and Rates." 2007 SPE Rocky Mountain Oil & Gas Technology Symposium. Denver, Colorado: Society of Petroleum Engineers, 2007.

Recent NETL Life Cycle Assessment Reports

Available at http://www.netl.doe.gov/energy-analyses/:

- Life Cycle Analysis: Existing Pulverized Coal (EXPC) Power Plant
- Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant
- Life Cycle Analysis: Natural Gas Combined Cycle (NGCC) Power Plant
- Life Cycle Analysis: Supercritical Pulverized Coal (SCPC) Power Plant
- Life Cycle Analysis: Power Studies Compilation Report

Analysis complete, report in draft form:

- Life Cycle GHG Analysis of Natural Gas Extraction and Delivery
- Life Cycle Assessment of Wind Power with GTSC Backup
- Life Cycle Assessment of Nuclear Power

Other related Life Cycle Analysis publications available on NETL web-site:

- Life Cycle Analysis: Power Studies Compilation Report (Pres., LCA X Conference)
- An Assessment of Gate-to-Gate Environmental Life Cycle Performance of Water-Alternating-Gas CO₂-Enhanced Oil Recovery in the Permian Basin (Report)
- A Comparative Assessment of CO₂ Sequestration through Enhanced Oil Recovery and Saline Aquifer Sequestration (Presentation, LCA X Conference)

Contact Information

Office of Fossil Energy www.fe.doe.gov

NETL www.netl.doe.gov

Timothy J. Skone, P.E.

Lead General Engineer OSEAP - Planning Team (412) 386-4495 timothy.skone@netl.doe.gov

Joe Marriott, PhD

Associate Booz Allen Hamilton (412) 386-7557 marriott_joe@bah.com

James Littlefield

Associate
Booz Allen Hamilton
(412) 386-7560
littlefield_james@bah.com