SSR-√-2012

Session: The M5.8 Central Virginia and the M5.6 Oklahoma Earthquakes of 2011

ARE SEISMICITY RATE CHANGES IN THE MIDCONTINENT NATURAL OR MANMADE?

ELLSWORTH, W. L., US Geological Survey, Menlo Park, CA, ; HICKMAN, S. H., US Geological Survey, Menlo Park, CA, ; LLEONS, A. L., US Geological Survey, Menlo Park, CA, ; MCGARR, A., US Geological Survey, Menlo Park, CA, ; MICHAEL, A. J., US Geological Survey, Menlo Park, CA, ; RUBINSTEIN, J. L., US Geological Survey, Menlo Park, CA,

A remarkable increase in the rate of M 3 and greater earthquakes is currently in progress in the US midcontinent. The average number of M >= 3 earthquakes/year increased starting in 2001, culminating in a six-fold increase over 20th century levels in 2011. Is this increase natural or manmade? To address this question, we take a regional approach to explore changes in the rate of earthquake occurrence in the midcontinent (defined here as 85° to 108° West, 25° to 50° North) using the USGS Preliminary Determination of Epicenters and National Seismic Hazard Map catalogs. These catalogs appear to be complete for M >= 3 since 1970. From 1970 through 2000, the rate of M >= 3 events averaged 21 + - 7.6/year in the entire region. This rate increased to 29 +- 3.5 from 2001 through 2008. In 2009, 2010 and 2011, 50, 87 and 134 events occurred, respectively. The modest increase that began in 2001 is due to increased seismicity in the coal bed methane field of the Raton Basin along the Colorado-New Mexico border west of Trinidad, CO. The acceleration in activity that began in 2009 appears to involve a combination of source regions of oil and gas production, including the Guy, Arkansas region, and in central and southern Oklahoma. Horton, et al. (2012) provided strong evidence linking the Guy, AR activity to deep waste water injection wells. In Oklahoma, the rate of M >= 3 events abruptly increased in 2009 from 1.2/year in the previous half-century to over 25/year. This rate increase is exclusive of the November 2011 M 5.6 earthquake and its aftershocks. A naturally-occurring rate change of this magnitude is unprecedented outside of volcanic settings or in the absence of a main shock, of which there were neither in this region. While the seismicity rate changes described here are almost certainly manmade, it remains to be determined how they are related to either changes in extraction methodologies or the rate of oil and gas production.

Wednesday, April 18th / 3:45 PM Oral / Pacific Salon 4 & 5

1 of 1 4/13/2012 3:21 PM