About DOE Button Organization Button News Button Contact Us Button
US Department of Energy Seal and Header Photo
Science and Technology Button Energy Sources Button Energy Efficiency Button The Environment Button Prices and Trends Button National Security Button Safety and Health Button
_DOE Office of Fossil Energy Web Site
You are here:  Educational Activities > Energy Lessons > Oil-Introduction > 4-Advanced Oil Recovery

An Energy Lesson

Looking Down an Oil WellLooking Down an Oil Well

Soap, Bugs and Other Ways to Produce Oil

Remember the oil spilled on the garage floor in the previous page? Washing it with water would only remove some of the oil. There would still be a black, oily stain on the floor. How would you get that oil up?

You would probably add some soap to the water perhaps some detergent that you use in a washing machine. That would help wash away a little more of the oil. Oil researchers are studying ways to inject chemicals similar to detergents into an oil reservoir. The researchers call these chemicals "surfactants." Surfactants keep the tiny oil droplets from clinging to the rock much like a soapy film keeps water droplets from clinging to the side of a glass.

Steam Injection -
Steam is injected into many oil fields where the oil is thicker and heavier than normal crude oil.


Temperature can also be important in freeing oil from underground reservoirs. In some oil reservoirs -- in much of California, for example -- the oil is thicker and heavier. It hardly flows out of a jar, much less out of an oil reservoir. But if the oil is heated, it becomes thinner and more slippery. To heat heavy oil in a reservoir, oil companies boil water in huge pressure vessels on the surface and send the steam down wells. The steam works its way through the oil reservoir, heating the oil and making it easier to pump to the surface.

Another way to free trapped oil is to inject carbon dioxide. Some carbon dioxide exists naturally underground, and companies often pump it out of the ground, then back in to oil reservoirs to help produce more oil. Carbon dioxide is also given off when anything burns. Many power plants that produce our electricity burn coal, natural gas and other fuels. These plants produce large amounts of carbon dioxide as do factories. Even you produce carbon dioxide when you breathe. It would be very hard to capture the carbon dioxide of every breathing person, but it may be possible in the future to capture carbon dioxide from big power plants or factories. This carbon dioxide can be injected into an oil reservoir to mix with the oil, break it away from the underground rock, and push it toward oil wells. 

Microbes used for enhanced oil recovery -
Microbes inside an oil drop. The average size of these single cell organisms is about 25,000ths of an inch.


Still another technique being studied uses microscopic organisms called "microbes." Even though some scientists jokingly call these tiny microbes "bugs," they really don't have heads or legs or bodies. Instead, they are more like bacteria tiny, single-cell organisms that can grow and multiply inside the rocks deep within oil reservoirs.

How can microbes be used to produce more oil? Actually, several ways. Some microbes can feed on nutrients in a reservoir and release gas as part of their digestive process. The gas collects in the reservoir, like air inside a balloon, building up pressure that can force more oil droplets out of the rock pores and toward oil wells. To get microbes to grow and multiply fast enough, oil scientists are testing ways to inject nutrients, or food, for the microbes into a reservoir.

Microbes can also be used to block off portions of a reservoir. After many years of waterflooding, most of the water eventually finds the easiest path through the oil reservoir. Oil trapped in the rocks along that path is washed out of the reservoir, but oil in other parts of the reservoir may be left untouched. To send the water to other parts of the reservoir, scientists mix microbes, along with food for the microbes, into the waterflood. As the microbes move along with the water, they injest the food, grow and multiply. Eventually, enough microbes are created to block off the tiny passageways. Now, scientists can inject fresh water and send it to portions of the reservoir that haven't been swept clean by the earlier waterflood, and more oil can be produced.

Scientists are also developing new chemicals called "polymers" that can help produce more oil. A "polymer" is long chain of atoms joined together in one large molecule. The molecule is small enough to fit through the pores of a reservoir rock, but large enough to break loose an oil droplet. In fact, scientists are developing a special type of polymer that performs two functions: one end of the molecule acts like a microscopic "sledgehammer" to break loose the oil droplet, while the other end acts like a surfactant (see above) to keep the oil sliding through the rock to an oil well.

All of these techniques show promise, but all add costs to the oil production process. Not every technique can be used in every oil reservoir. Some are better than others. But even if some, or all, of these techniques are proven to be practical, they won't get out all of the oil remaining in a reservoir.

In fact, the very best methods being tested today will allow oil companies to produce only half to, in some cases, three-fourths of the oil in a reservoir. It may not be possible to get the rest of the oil out. But even getting this amount of additional oil out of our oil fields can be very important for our energy future.

And who knows? Someday, scientists might find a way to get even more of the vast quantities of oil that we leave behind today down at the bottom of oil wells.


Dr. H. Carbon asks: Crude oil can be either sweet or sour.  What determines this?

The sugar in it.


The sulfur in it.


The vinegar in it.

Click on your choice



 Page owner:  Fossil Energy Office of Communications
Page updated on: September 18, 2012 

The White House USA.gov E-gov IQ FOIA Privacy Program
U.S. Department of Energy | 1000 Independence Ave., SW | Washington, DC 20585
1-800-dial-DOE | f/202-586-4403 | e/General Contact

Web Policies | No Fear Act | Privacy | Phone Book | Accessibility