# INDUSTRIAL CCS FEASIBILITY STUDIES IN NORWAY

2016 CSLF Technology Workshop

GASSNOVA

Trude Sundset, CEO

### **CCS IS A PART OF THE SOLUTION**

COP21: From urgency to action!
Obama: "The best chance we have to save the one planet that we've got."

----

# **GASSNOVA SF**

#### THE NORWEGIAN STATE ENTERPRISE FOR CCS

For 10 years, Gassnova has navigated the intersection between high-level politics, technology and commercial interest to find solution to the climate challenge. We have made major progress.

#### **Purpose:**

- Manage the State's interests in relation to CCS and implement projects
- Advise the Ministry of Petroleum and Energy in CCS issues.
- Contribute to technology development and knowledge-sharing through specific CCS projects and implementation of the CLIMIT programme.
- Approx. 40 employees

Govern a total budget of approx. 40 € millions (in 2016)

GASSNOVA IS SET UP TO SUCCEED WITH CCS

> FULL-SCALE

**TCM** Demo



# CLIMIT R&D

## CLIMIT: FROM R&D – DEMO

Annual budget 25 million Euro since 2005

• More than 300 projects have received support

### **CLIMIT:** SUPPORT THAT HAS YIELDED RESULTS

#### CAPTURE

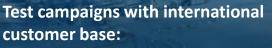
- More effective solvents
- Qualified material selection
- New methods
- Experience from industrial emissions

#### ENVIRONMENTAL IMPACT

• Amine emissions



#### **INTERNATIONAL COOPERATION**


- USA
- Canada
- Germany
- The Netherlands
- UK

#### TRANSPORT

- Pilot testing of CO<sub>2</sub> with impurities
- Corrosion
- STORAGE
- Capacity simulation
- Monitoring
- Enhanced oil recovery

## **CO<sub>2</sub> TECHNOLOGY CENTRE MONGSTAD (TCM)**

#### 2012 → 2017 → 2020



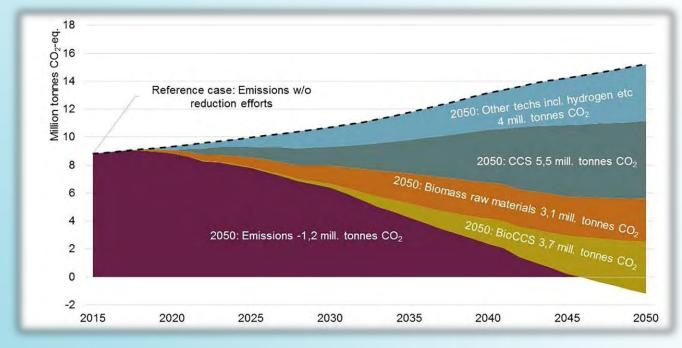
- Aker Solutions
- Alstom (now GE)
- Shell Cansolv
- Carbon Clean Solutions

#### Planned test campaigns:

- ION Engineering (USA)
  - Test Agreement signed
     9 August 2016

#### **Reference campaigns on MEA:**

- MEA (30 wt%) is well suited
- Data open to third party


Owners: Gassnova (on behalf of the Norwegian state), Statoil, Shell and Sasol

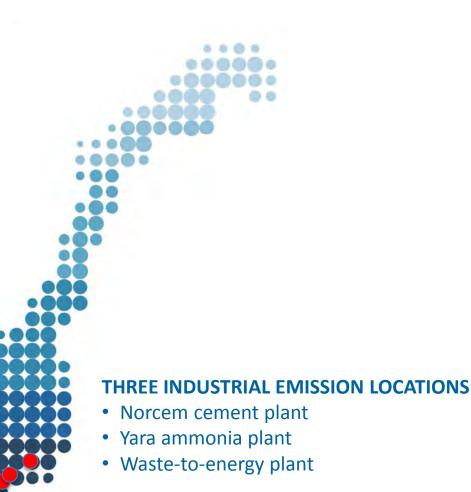
WE NEED TO REALIZE FULL SCALE PROJECTS TO DEVELOP CCS FURTHER

### **NORWAY:**



### **INDUSTRY AIM TO HAVE ZERO EMISSIONS BY 2050** CCS IS AN IMPORTANT TOOL TO REACH THIS GOAL




The Norwegian process industries' roadmap Combining growth and zero emissions by 2050

> The Federation of Norwegian Industries

# NORWAY: FEASIBILITY FULL-SCALE CCS PROJECT

#### **CO<sub>2</sub> TRANSPORT AND STORAGE**

- Ship transportation
- Intermediate onshore storage
- Offshore storage in an aquifer
- The Ministry of Petroleum and Energy is ultimately responsible for transport and storage



#### **CO<sub>2</sub> CAPTURE IS TECHNICALLY FEASIBLE**

Sources – Cement plant – Ammonia plant – Waste-to-Energy plant No technical showstoppers Various regional challenges (e.g.: logistics, proximity to neighbors ...) Significant learning potential in all three capture projects

#### **NORCEM HEIDELBERG CEMENT PLANT IN BREVIK**

• 400 000 tonnes of CO<sub>2</sub>/year (50% of their CO<sub>2</sub> emissions)

• Concept of capture as much CO<sub>2</sub> possible utilising the excess heat from cement production

### YARA PORSGRUNN FERTILIZER PLANT

- 805 000 tonnes of CO<sub>2</sub>/year (will capture 90% of the factory's emissions)
- Three main sources of CO<sub>2</sub> emissions from the ammonia plant
- Yara sell 200 000 tonnes of  $CO_2$ /year by liquefaction and ship transport to the market

### THE KLEMETSRUD WASTE-TO-ENERGY PLANT IN OSLO

- 315 000 tonnes of CO<sub>2</sub>/year (90% of their CO<sub>2</sub> emissions)
- 60% is bio-fuel making it a CO<sub>2</sub> negative project
- Focus on heat integration to minimize energy loss

# CO<sub>2</sub> TRANSPORTATION

And the second se

- Ship transportation more flexible compared to pipelines
- Shipping solutions in the market to transport from quay to quay

# CO<sub>2</sub> STORAGE

- An offshore storage site in a saline aquifer
- The "Smeaheia" storage area is approximately 50 km from the coast
- Injection pump onshore and a pipeline to a subsea injection well
- Large storage capacity in this aquifer (this project will utilize < 1%)</li>

# COSTS

|         |                                                | One source                | Three sources               |
|---------|------------------------------------------------|---------------------------|-----------------------------|
| ~       |                                                | 400 kt CO <sub>2</sub> /y | 1 300 kt CO <sub>2</sub> /y |
| I Cath  |                                                |                           |                             |
| 111 M   | Planning and investment costs (€ millions)     | 791                       | 1384                        |
| Leve M. | Operating and maintenance costs (€ millions/y) | 39                        | 98                          |



### LEARNING

- Construction and operation of capture plant
- Integration with existing plant in operation
- Establishing business models for CCS
- Liability and regulatory framework
- Risk reduction and CCS technology development

### NEXT PHASE...

Autumn 2016: Invitation to Tender

First quarter 2017: Start-up concept phase

Autumn 2018: Concept and FEED studies finalized

North Contraction

Spring 2019: Investment decision

In 2022: Full-scale CCS chain in operation

### NORWAY CCS: THE TIME IS NOW!

- CO<sub>2</sub> emissions from different industries
- Feasibility studies performed in cooperation with dedicated industries
- Solutions with real potential for deployment
- CCS Necessary to achieve our climate goals
  - CCS Essential for industry to stay competitive in a green economy