Offshore CO₂-EOR Pilot Project in Vietnam

5th October 2016 © Yohei Kawahara Atsushi Hatakeyama

Contents

1. Introduction

- 2. Offshore CO2-EOR Pilot Project in Vietnam
 - Feasibility Study
 - CO2 Huff'n'Puff Pilot Test
 - Test Results
 - Alternative EOR Application- HCG-EOR

3. Conclusions

1. Introduction

Introduction -JX Nippon

JX Holdings, Inc.

Energy Business

Market share of domestic sales of petroleum products

Approx. $36\%^{*1}$ (No.1 in Japan)

Market share of domestic sales of lubricant products

Approx. 34%*2(No.1 in Japan)

Paraxylene supply capacity

thousand *3 3,120 tons/year

and Natural Gas Exploration ar **Production Business**

Crude oil and natural gas sales volume(a project company basis)

Approx. 121 thousand */
barrels/day (B/D) thousand

Worldwide business activities in such areas as Malaysia, Vietnam, North Sea (UK), Middle East and others

Equity entitled copper mine production

Approx. 170 thousand *5 tons/vear

Refined copper production capacity

920 thousand *6 tons/year

Electronic Materials:

Products with world No.1 market shares

Listed subsidiaries and Others

NIPPO Toho Titanium

Common function companies

> Independent companies

- *1 FY2015 actual
- *2 FY2015 actual
- *3 As of Mar. 2016
- *4 Crude oil equivalent (average daily production from Jan. to Dec. 2015 actual)
- *5 Equity entitled copper production contained in copper concentrate (FY2015 actual)
- *6 Pan Pacific Copper (67.8% equity stake); 650 thousand tons/year + LS-Nikko Copper (39.9% equity stake); 270 thousand tons/year (As of Mar. 2016)

*7 Profit and loss of Toho Titanium is included in the Metals Business.

JX Nippon Business Activities

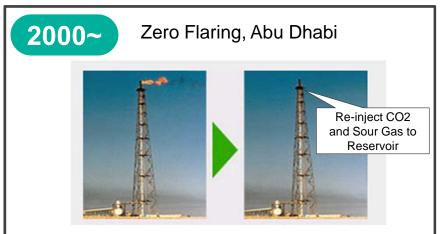
JX Nippon Oil & Gas Exploration

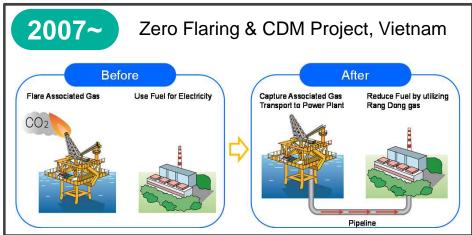
Date of establishment : June 26, 1991

Head office : 1-2 Otemachi 1-chome, Chiyoda-ku, Tokyo

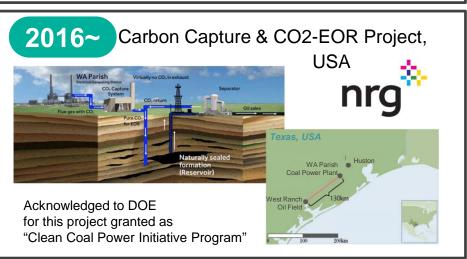
Paid-in capital : 9.8 Billion yen

Number of employees : 949 (as of March 31st, 2016)




The UK North Sea	9 0
The U.S.	O
Canada	②
Thailand	Ø
Vietnam	O O
Myanmar	O O
Malaysia	② ③ ③
Indonesia	
Australia	②
Brazil	0
Papua New Guinea	9 9
UAE / Qatar	O O
Japan	OO

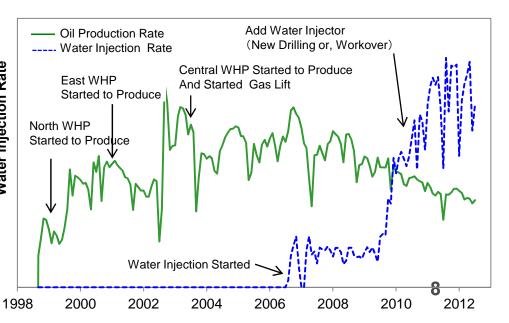
Challenges for CO₂ Reduction on JX Nippon's E&P Business Activities



JX Nippon continues "Challenges" in accordance with Company Mission Statement "Harmony with the environment"

2. Offshore CO₂-EOR Pilot Project in Vietnam

Rang Dong Field, Offshore Vietnam


Rang Dong Field

- The field was discovered in 1994, and has been produced since 1998.
- Current cum. oil production is 200 Millionth bbl.

About 120 km offshore of Southern Vietnam S. R. Vietnam Block 15-2 JVPC Con Son Island Rang Dong Rang Don

Reservoir Description

Reservoir Properties	Rang Dong LM Reservoir	Criteria for Gas EOR
Reservoir Depth [m]	2,100	>650
Reservoir Pressure [psi]	3,100	>1,030
Reservoir Temp. [degF]	196	>90
API Gravity [API]	38	>31
Oil Viscosity [cP]	0.76	<5
Oil Saturation [%]	50	>25
Permeability [mD]	1-3,000	>5

CO₂-EOR Project Scheme

To study the CO₂-EOR applicability to the offshore oil fields in Vietnam through an international joint study between Vietnam and Japan

International Joint Study

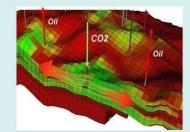
CO₂-EOR Project History

2007-2010 Phase 1 Feasibility Study

To evaluate the potential and feasibility of CO₂-EOR to Rang Dong field

Laboratory Study

Slimtube Test Interfacial Tension Test Swelling Test Coreflood Test


Simulation Study

Geological Model Upscale History Match EOS Model Optimized CO2 EOR

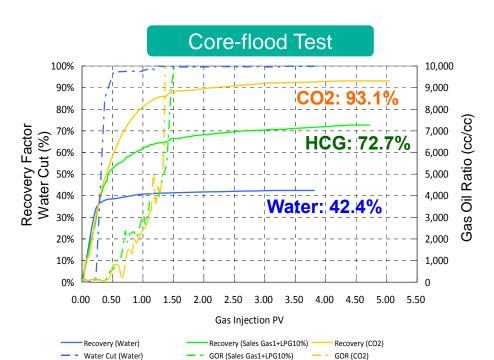
CO2 Source Study

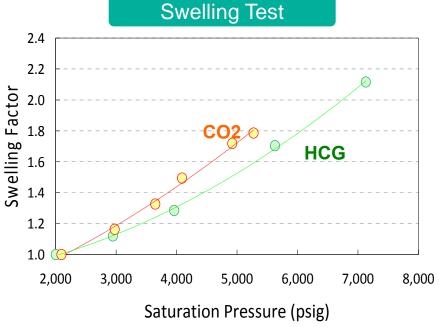
Site Survey
Facility Modification
Cost Estimation

2011-2014 Phase 2 Pilot Test

To confirm CO₂-EOR effects in actual reservoir

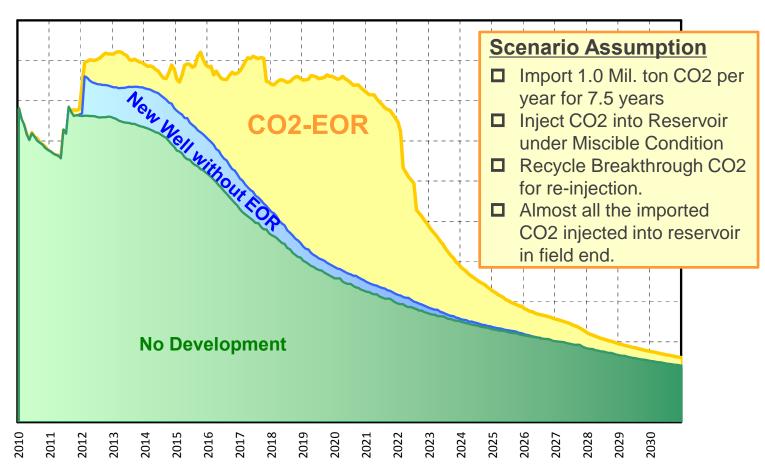
Phase 1: Laboratory Study




1st Feasibility Study

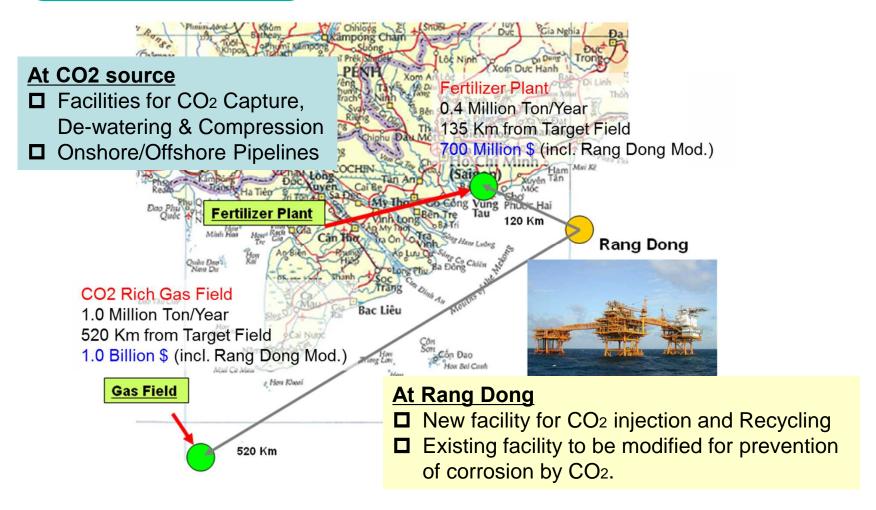
- Slim-tube Test
- IFT Test
- Solubility Swelling Test
- Core-flood Test

- ☐ Injected CO₂ and crude form "Miscible (completely mixed and form single phase)" under reservoir condition
- CO2 flooding yield 2.2 times recovery factor against Water Flooding in Core Scale


-11

Phase 1: CO2-EOR Incremental Oil

Special reservoir model constructed with Laboratory Study results for Evaluation of CO2-EOR Incremental Reserves.



Phase 1: Studies for CO₂ Source and Facility Development/Modifications

1st Feasibility Study

CO2 Source Study & Cost Estimation

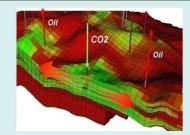
CO₂-EOR Project History

2007-2010 Phase 1 Feasibility Study

To evaluate the potential and feasibility of CO₂-EOR to Rang Dong field

Laboratory Study

Slimtube Test Interfacial Tension Test Swelling Test Coreflood Test


Simulation Study

Geological Model Upscale History Match EOS Model Optimized CO2 EOR

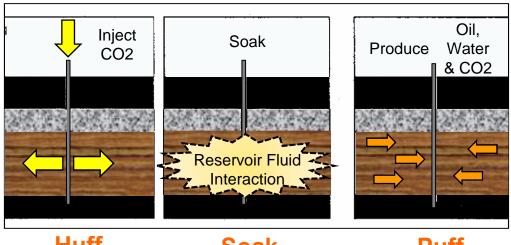
CO2 Source Study

Site Survey
Facility Modification
Cost Estimation

2011-2014 Phase 2 Pilot Test

To confirm CO₂-EOR effects in actual reservoir

CO₂ Huff'n'Puff Test -Objectives



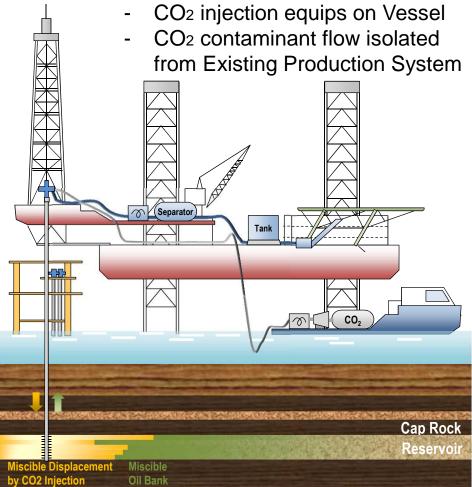
Objectives of H&P pilot test

In order to confirm an effectiveness of CO₂-EOR, a small CO₂-EOR pilot test was conducted.

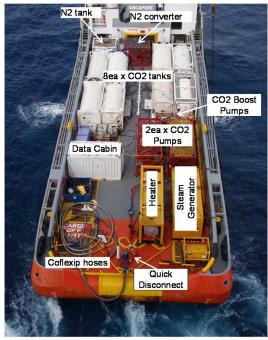
- To Confirm CO₂ Injectivity
- To Confirm *Increased Oil Production*
- To Confirm Mechanisms of CO2-EOR

Three Stage Actions

Merits on Huff'n'Puff

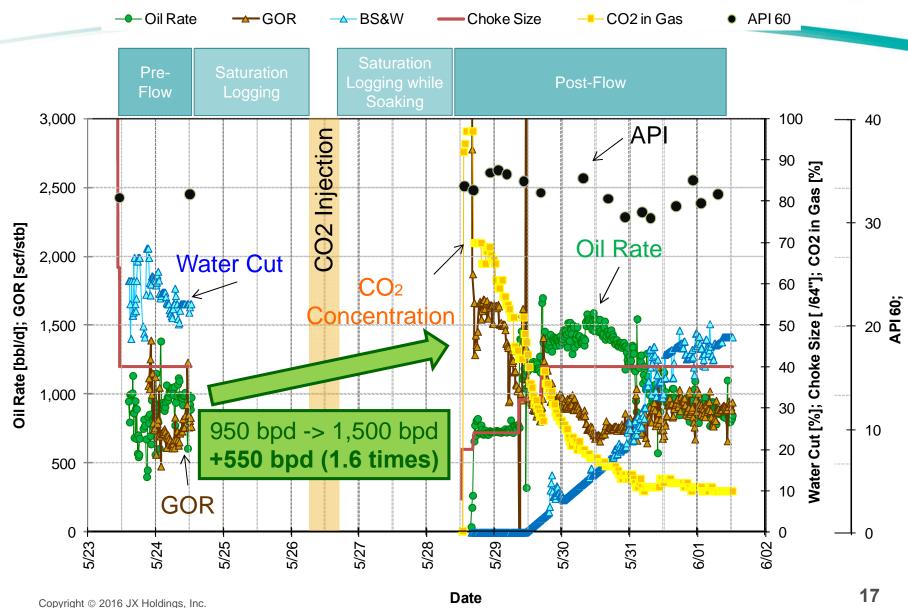

- **Single Well**
- **Short Test**
- **Small CO2 Requirement**
- **Minimum Impact to Facility**

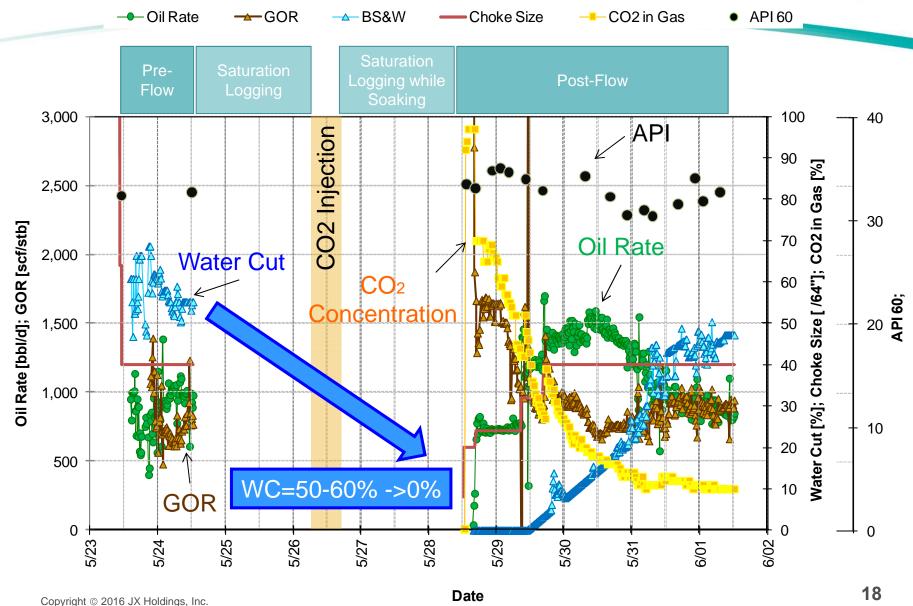
CO₂ Huff'n'Puff Test -Operation



Test Operation

- DST equips on Rig



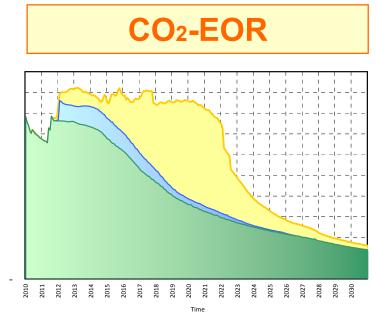

Oil Increment by CO₂ Huff'n'Puff

Water Cut Reduction by CO₂ Huff'n'Puff

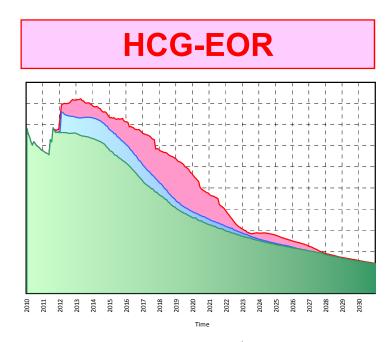
CO₂ Huff'n'Puff Test Results

Operation was successfully completed without any operational trouble and HSE issues

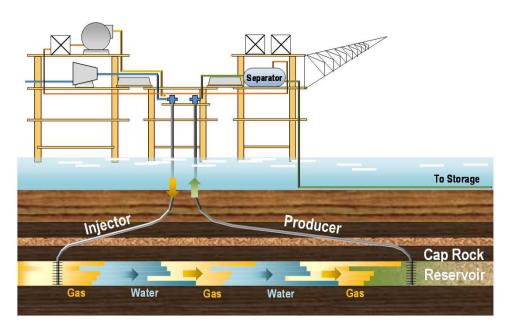
CO2 Huff'n'Puff Test provided following results;


- CO₂ Injectivity
- Oil Production Increase
- Water Cut Reduction
- Oil Property Changes by CO₂ injection
- Oil Saturation Changes before / after CO₂ injection

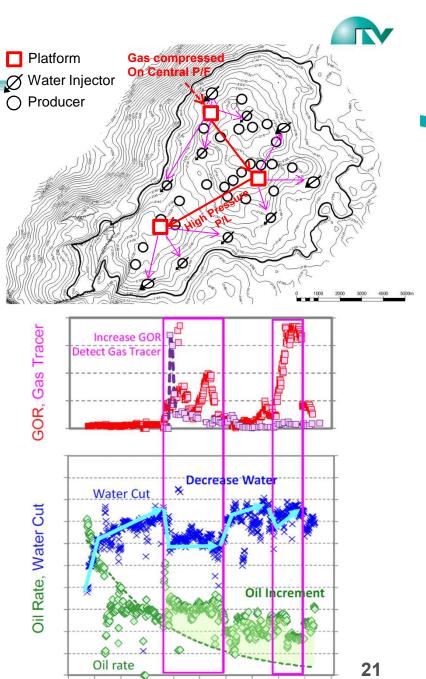
Feasibility Study and CO2 Huff'n'Puff test results indicated CO2-EOR is technically applicable for Rang Dong Field


Alternative EOR Application ~HCG-EOR~

CO₂-EOR can maximize ultimate recovery. However, HCG-EOR is more cost-effective application.


CAPEX: US\$100 Mil.

CO₂-EOR project is temporary suspended. JX proceeded HCG-EOR toward commercial application.


HCG-EOR Application in Rang Dong Field

JX also succeeded HCG-EOR Pilot Test since 2012.

JX implemented HCG-EOR as the first commercial EOR since 2014.

3. CONCLUSIONS

3. Conclusions

- JX planned and conducted 1st Offshore CO₂-EOR Pilot Test in SE Asia, jointly with JOGMEC/PVN in 2011.
- CO₂-EOR is technically applicable, but economically challenging for Rang Dong due to inconveniently located offshore project. Alternatively, JX has applied commercial HCG–EOR since 2014.
- Technical experiences in Rang Dong Field highly encourage CO₂-EOR business expansion. JX could achieve FID for Carbon Capture & CO₂-EOR Project in United States, under "Clean Coal Power Initiative Program" granted by DOE.
- JX continues development of CO₂-EOR technology for maximizing oil production and reduction of CO₂.

Thank you for your attention

