

Plant Barry CO₂ Capture Project

October 2015

MITSUBISHI HEAVY INDUSTRIES, LTD.

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

Confidential

As a global leader in industrial and infrastructure manufacturing, **Mitsubishi Heavy Industries** is creating commercially viable technology for capturing carbon emissions from coal-fired plants, while enhancing domestic oil production.

1. MHI's CO₂ Capture Technologies & Experience

1.1 History of Development of MHI's CO₂ Capture Technology

1990	Started R&D activities with Kansai Electric Power Company (KEPCO)
1991	Started a 2 ton per day pilot plant at KEPCO's Nanko Power station
1994	Development of proprietary hindered amine solvent "KS-1 [®] " and "KM CDR Process [®] " with KEPCO
1999	First commercial plant in Malaysia (200 ton per day, to enhance urea synthesis from the CO_2 recovered from a reformer flue gas)
2002	Started a pilot test for coal-fired power plant at MHI's Hiroshima R&D center
2003	High energy efficiency - Development of proprietary energy efficient process "Improved KM CDR Process"
2008	First commercial plant in Middle east (400 ton per day) which "Improved KM CDR Process" applied
2011	World's First - Started 500 ton per day fully integrated CCS demonstration plant with Southern Company for a coal-fired power plant at Alabama Power's James M. Barry Electric Generating Plant
2014	World's Largest - Received an order for a PCC plant of 4,776 ton per day for EOR mainly promoted by NRG Energy Inc. and JX Nippon Oil & Gas Exploration Corporation

Deployment of R&D Facilities for specific CO₂ capture testing. More than 25 years R&D Experience

- (A) 2.0 TPD Nanko Osaka pilot plant from 1991
- (B) 1.0 TPD Hiroshima pilot plant
- (C) 10 TPD Matsushima pilot for testing coal fired flue gas
- (D) 500 TPD Barry CCS demonstration plant in Alabama, (25MW equivalent)

2.0TPD Nanko Pilot Plant (Kansai Electric Power Co.)

1.0TPD Hiroshima Pilot Plant (MHI' R&D Center)

10TPD Matsushima Pilot Plant (J-Power)

500TPD Barry Demonstration Plant (Southern Company)

1.3 MHI CO₂ Capture Plants Commercial Experience

- World leading <u>large scale</u> post combustion CO₂ capture technology licensor, with 11 commercial plants in operation from a variety of natural gas or heavy oil flue gas sources
- World's largest CCS plant is under construction in Texas.

2005 330 t/d Japan

CO₂ Recovery (CDR) Plant – IFFCO AonlaUnit (India)

2006 450 t/d India

CO₂ Recovery (CDR) Plant – IFFCO Phulpur Unit (India)

2006 450 t/d India

2009 450 t/d India

2009 450 t/d Bahrain

210 t/d Malaysia

2010 400 t/d UAE

2010 240 t/d Vietnam

2011 340 t/d Pakistan

2012 450 t/d India

2014 500 t/d Qatar

2016 283 Mt/d Japan

1.4 Petra Nova CO₂ Capture Plant for CO₂-EOR

The world's largest CO₂ capture and compression plant from coal-fired power plant

Project owner: Petra Nova, a partnership between NRG Energy, Inc. and JX Nippon Oil & Gas Exploration Corporation

- Location: NRG WA Parish Power Plant in Thompsons, TX.
- Flue gas source: Slipstream off of 650MW coalfired boiler
- CO_2 concentration: 11.5%
- CO₂ capture capacity: 4,776 TPD (240MW equivalent)
- CO₂ capture ratio:90%
- CO_2 Use : CO_2 EOR
- Pipeline : Approximately 81miles
- Injection Site: West Ranch oil field in Jackson County, TX
- Operation Start: 4th Quarter, 2016

2. 500 TPD Barry Demonstration Plant

MITSUBISHI HEAVY INDUSTRIES, LTD.

2.1 Specification of Demonstration Plant

Southern Company Plant Barry CO₂ Demo Plant

Item	Description
Plant location	Mobile County (Alabama, U.S.A.)
Plant owner	Southern Company subsidiary Alabama Power
Process	KM CDR Process®
Absorption liquid	KS-1 [™] solvent
Plant scale	Corresponding to 25 megawatts (MW)
Flue gas amount	116,800 Nm³/h
CO ₂ concentration	10.1 mol%-wet
CO ₂ capture capacity	500 tonnes/day (150,000 tonnes/year)
CO ₂ capture ratio	90 percent

Test Item	Main Results		
Performance optimization	Achieved 0.95 ton-steam/ton-CO₂ by optimizing steam consumption		
Emissions & waste streams monitoring	Successfully demonstrated amine emission reduction technologies under the various SO ₃ concentration condition		
Dynamic response test	Successfully demonstrated Automatic Load Adjustment & Optimized Operation Control System		
Long term test validating equipment reliability and life	Achieved more than 100,000 metric tons of CO₂ injection without any operational issues.		

MITSUBISHI

- Flue gas CO₂ concentration varies based on boiler load
- KM-CDR[®] Process can be adjusted to achieve the desired CO₂ capture rate and production rate with varying boiler conditions

ITSUBISHI

		Base Case	High Efficiency Case	High Load Case
Flue gas condition	Flue gas flow rate [Nm ³ /hr]	109,000	112,000	116,000
	CO ₂ concentration at the Quencher Inlet [vol.% (w)]	10.8	10.5	10.8
Operation Results	CO ₂ Capture rate [TPD]	505	509	543
	CO ₂ removed efficiency [%]	91	91	91
	Steam Consumption [ton-steam/ton-CO ₂]	0.98	0.95	1.02

2.3 Plant Performance (2/3) - Operation Data Trend

- Very stable at full load condition with CO₂ capture rate of >500tpd at 90% CO₂ removal
 - Lower steam consumption compared with the MHI conventional process

2.3 Plant Performance (3/3) - Summary

- Gas In for CO₂ Capture Plant: June, 2011
- Commissioning of CO₂ Compressor: August, 2011
- Commissioning of CO₂ Pipeline: March, 2012

CO₂ Injection Pump (Denbury)

- CO₂ injection into underground formation started on August 20th, 2012 as part of DOE funded SECARB project (World's Largest Integrated CCS from Coal-fired Power Plant)
- 100,000 metric tons of CO₂ injection was achieved on October 29th, 2013.

Items		Results	
Total Operation Time *	hrs	12,400	
Total Amount of Captured CO ₂ *	metric tons	253,600	
Total Amount of Injected CO ₂ *	metric tons	126,900	
CO ₂ Capture Rate	metric tons per day	> 500	
CO ₂ Removal Efficiency	%	> 90	

* Operating Experience as of August 31, 2014 (End of Phase I Demonstration)

Demonstrated MHI's advanced amine emission reduction system

Amine emission was reduced by more than 90% in comparison with the conventional system under the presence of SO₃ in flue gas

Coal fired power plant changes the operation load frequently and the flue gas condition fluctuates

Demonstrate Automatic Load Adjustment Control (ALAC) & Optimized Operation Condition Control (OOCC)

Automatic Load	Optimized Operation		
Adjustment Control (ALAC)	Condition Control (OOCC)		
 Load following operation for; 1) CO₂ production demand 2) Flue gas flow rate change (Simulated boiler-load change) 	 Continuous optimization of the operation condition for; 1) CO₂ production demand 2) CO₂ recovery rate requirement (Simulated boiler-load change) 		

2.5 Automatic Load Adjustment Control (2/3)

- The load adjustment (ALAC) system was developed with MHI's dynamic simulator.
- The load control system for KM-CDR[®] process successfully followed the load change at 5% per minute without any adverse effect.

KM-CDR[®] Process load adjustment system is proven and ready for applications that involve load changing power plants.

2.5 Automatic Load Adjustment Control (3/3)

- The Optimized operation control (OOCC) system was added to the ALAC system.
- The system for KM-CDR[®] process automatically and continuously optimized the plant operation following to CO₂ production Demand or CO₂ recovery rate requirement.

KM-CDR[®] Process operation control system is also proven and ready for the integration with upstream and downstream facility.

3. HES Demonstration Project

MITSUBISHI HEAVY INDUSTRIES, LTD.

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

Integrated with MHPS's HES and MHI's 500 TPD CCS Plant at Plant Barry circulating BFW between host site steam cycle, CCS and HES Energy efficiency improvement and tangential benefits (removal improvement of PM, SO₃, Hg, Se, etc.) were evaluated GasFlow to ESP 350° Air heater Drv ESF То 25 MW SCR CCS Outlet Flue Gas Plant w from APH Boiler Condensate 203° Flue CO2 Gas 0.25 MW 167 Cooler Miniatur ESP CO₂

Fly

Ash

Bird's-eye View

Sootblow

Outline of Project

Steam Cycle

3. HES Demonstration Project

- DOE funded 25 MW pilot demonstration project for heat integration system with CCS plant

25 MW Pilot Test Facilities

Boiler Condensate

101[°]

Cooler in CCS

Plant

Flue Gas Cooler (Heat Extractor) on 25 MW Pilot

3.1 Test Result - Performance

- Confirmed heat integration performance
 - 240-300 MMBTU/hr heat recovery for 550 MW base plant
 - Up to 65% reduction of FGD makeup water

Source	Data collected	Units	w/o HES heat integration	w/ HES heat integration	w/ HES heat integration
FGC	Flue gas flow rate	scfm	49,998	60,640	60.631
	Flue gas temp FGC inlet	degF	288	323	314
	Flue gas temp FGC outlet	degF	NA	200	186
	Recovered heat	MMBtu/h	NA**	8.66	9.09
CO ₂	Flue gas flow rate*	scfm	73,800	73,800	73,800
	CO ₂ removal performance*	%	> 90	> 90	> 90
	BC flow rate	stph	0	38	50
	BC temp CO ₂ cooler inlet	degF	NA	128	123
	BC temp CO ₂ cooler outlet	degF	NA	167	167
	Recovered heat	MMBtu/h	NA	2.9	4.4
Plant	Boiler Load net	MW	721	783	680
	BC flow rate	stph	0	38	50
	BC feed temp	degF	NA	128	123
	BC return temp	degF	NA	280	264
	Recovered heat	MMBtu/h	NA	11.1	13.6
	Recovered heat for 550 MW base plant	MMBtu/h	NA	244	300

3.2 Test Result - Durability

- Confirmed no significant corrosion on tube bundles
 - 4 wks w/o SO₃ injection, 3 wks w/ SO₃ injection
 - Detailed analysis is in progress

*The remaining fly ash can be easily removed by soot-blowers.

4. Environmental Monitoring

MITSUBISHI HEAVY INDUSTRIES, LTD.

4.1 Environment Monitoring (1/2) - Activity

ITSUBISHI

4.1 Environment Monitoring (2/2) - Sampling Points

1)NA & NT were also measured in the air near the CO2 Capture plant inside Barry Power Plant. Confirmed that Concentration of NA & NT is less than 0.3 ng/Nm3 that NIPH recommends as allowable figures.

2)Carry out dispersion model calculation and compared the actual result. MHI consider that the dispersion model considering chemical reaction rate is appropriate to evaluate the environmental impact by amine emission.

5. Next Path

- Phase 1 DOE NETL Carbon Capture Program, Large-Pilot Scale Post-Combustion: Completed
- Phase 2: Planned

Program

✓ Built-in Reboiler

Replace regenerator reboiler & stripper with integrated unit

✓ Particulate Matter (PM) Management

Determine maximum allowable particulate matter concentration

✓ New Solvent A Testing

Replace KS-1[™] solvent with improved amine-based New Solvent A

=> Reduce capital & operating cost of CCS

6. Summary

MITSUBISHI HEAVY INDUSTRIES, LTD.

Summary

- Plant Barry captured Total 253,600 metric tons of CO₂, and total 126,900 metric tons of CO₂ were injected to underground as of August 31, 2014
- Demonstrated stable performance at full load condition with CO₂ capture rate of 500 TPD at 90% CO₂ removal.
- The following successful demonstration results were obtained.
 - New amine emission reduction technologies achieved significant reduction (More than 90% reduction).
 - Automatic Load Adjustment (ALAC) System stably controlled load changing at a rate of 5%/min. Optimized Operation Control (OOCC) System continuously optimized the operation following the changing of flue gas condition or CO₂ production demand.
- Southern Company and MHI completed DOE funded heat integration project to further improve net plant efficiency.
- Southern Company and MHI completed Phase 1 DOE NETL Carbon Capture Program, Large-Pilot Scale Post-Combustion. Phase 2 is being planned.

MITSUBISHI HEAVY INDUSTRIES, LTD.

Our Technologies, Your Tomorrow

MITSUBISHI HEAVY INDUSTRIES, LTD.

