

Integrating

Climate Into Our Strategy

2016

The Challenges of the 2°C Target

31% 7% INDUSTRY COAL 11% 49 AGRICULTURE (+/- 10%) Gt CO,eq 14% 23% OTHER OIL 14% GAS

GLOBAL GHG EMISSIONS IN 2010

OIL AND GAS

37%

GHG emissions related to human activity

OIL AND GAS EMISSIONS

~85%

associated with product end-use

~15[%] during production and refining

Source: IEA, CO2 Emissions from Fuel Combustion, 2014 Edition

Three Areas of Focus to Meet the 2°C Target

Total's Ambition: to be Consistent with the IEA's 2°C Scenario

Working with governments and industry

Advocating for a price on carbon

Focusing on oil projects with low breakevens

Prioritizing gas projects

Exiting coal business

Growing in renewables and biofuels

Integrating Climate into Our Strategy

Improving the Carbon Intensity of Our Production Mix

More than 60% gas in our hydrocarbon production mix in 20 years' time

Exiting the coal business

...

<u>+=</u>

Deploying an assertive strategy in gas, while limiting methane emissions

Selecting and developing safe, environmentally responsible, competitive oil and gas projects

Encouraging sector initiatives and collectively engaging to address climate issues

Publicly supporting the implementation of carbon pricing mechanisms

Expanding carbon capture, use and storage technologies

Encouraging Sector Initiatives and Engaging to Address Climate Change

Committed to working with OGCI member companies to deliver practical solutions to climate risks BP, CNPC, ENI, Pemex, Reliance Industries, Repsol, Saudi Aramco, Shell, Statoil, Total

An active member of the Climate and Clean Air Coalition

Working to effectively measure, manage and mitigate methane emissions

Pursuing a viable solution to eliminate routine flaring by 2030

Working with Global Compact

Total supports the call for companies to factor an internal carbon price into their investment decisions

\$)

Carbon Capture Usage and Storage (CCUS): Significant Potential to Mitigate Climate Change

A tool to help combat climate change

A real **business opportunity**

Critical to **invest and develop** an industry around CCUS to make an **impact on climate change mitigation**

TOTAL'S LACQ PROJECT

1st European onshore capture-transport-storage chain

3-year pilot

Over **51,000 metric tons of CO₂** successfully injected into the Rousse reservoir (France)

\$100M euros in CCUS R&D > \$60M euros invested in Lacq

Key R&D Priorities

Carbon Capture Utilization and Storage

Developing partnerships

With universities, startups and industrial collaboration

Expanding energy efficiency

Photovoltaic research, energy storage Reliability, affordability

Digital energy systems

Lacq project Key results of an integrated CCS chain based on oxycombustion

Dominique Copin

2016

Lacq and Rousse

A complete industrial chain based on gas-fired combustion

Combining 4 characteristics

Integrated project from capture to storage

Based on gas-fired combustion

Uses oxycombustion technology

CO2 stored in a depleted natural reservoir

Project Objectives

Acquire expertise and reduce costs for future industrial deployment

To Demonstrate the technical feasibility and reliability of an integrated onshore Carbone Capture and Storage scheme for steam production

To acquire operational experience and data to up-scale with cost reduction the oxy-combustion technology from pilot (30MW) to industrial scale (200MW).

To develop geological storage qualification methodologies

To develop monitoring methodologies on site to prepare future larger scale long term onshore storage projects. (Micro seismic monitoring, Environmental monitoring.)

Pilot Techical Description

Surface facilities

Key results of the Lacq capture phase

Test and Validation of Oxycombustion on a 30 MW boiler

Collection of data needed to design a 200 MW boiler

Transport and Storage

Reservoir Storage

- Jurassic fractured dolomitic reservoir
- Depth # 4500m/MSL
- ≻ Temp. # 150°C
- Initial P: 485 bars
- P before inj: # 40 bars
- Final pressure: # 90 bars
- > Initial CO₂ = 4,6%
- Initial H2S < 1%</p>
- Av. Porosity: 3%
- > Av. Perm. = 5mD
- Av. Water saturation: 30%- 40%
- Only one well: RSE-1, producing from 1972 to 2008, 0.9 GSM3.

Rousse Well-Specific Completion

4 Pressure and Temperature sensors Objectives:

- -Calibrate pressure loss models
- -Calibrate reservoir models
- -Monitor well injectivity

3 Micro-seismic sensors

Objectives:

-Assess the impact of the injection near the wellbore

Results from the Rousse Storage Phase

Characterization of a depleted gas reservois as a CO₂ storage site

Monitor the integrity and the environmental impact of a CO₂ storage site

19

Public Support and Acceptance

Engaging the community, transparency A brochure was published in 2014 outlining our stakeholder activities

Technical book on lessons learned at Lacq CCS pilot to be published Available on the GCCSI website

