CSLF Technology Workshop in Seoul Korea

Hadong and Boryeong 10 MW Pilot Projects

Dr. Chong Kul Ryu (ckryu@kepri.re.kr)
Renaissance Seoul Hotel, 26 March 2014

Contents

I KEPCO & KEPCO RI

Boryeong 10 MW CO₂ Capture Project

Hadong 10 MW CO₂ Capture Project

Summary

Monopoly in Korea (as of 2012)

84% 100% 100%

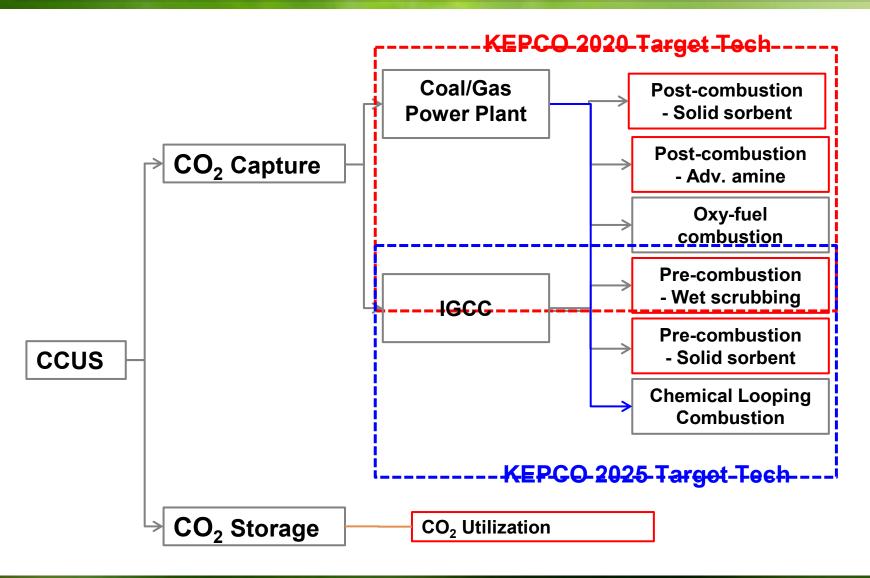
Generation

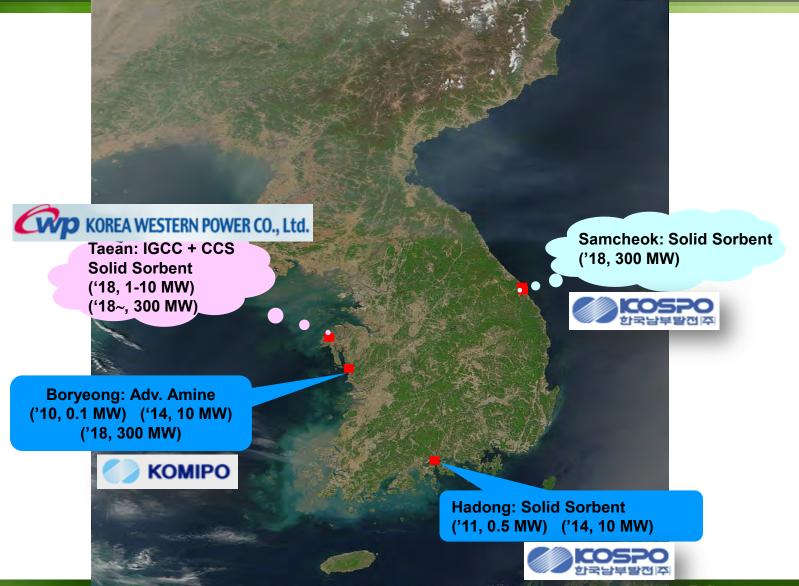
Transmission

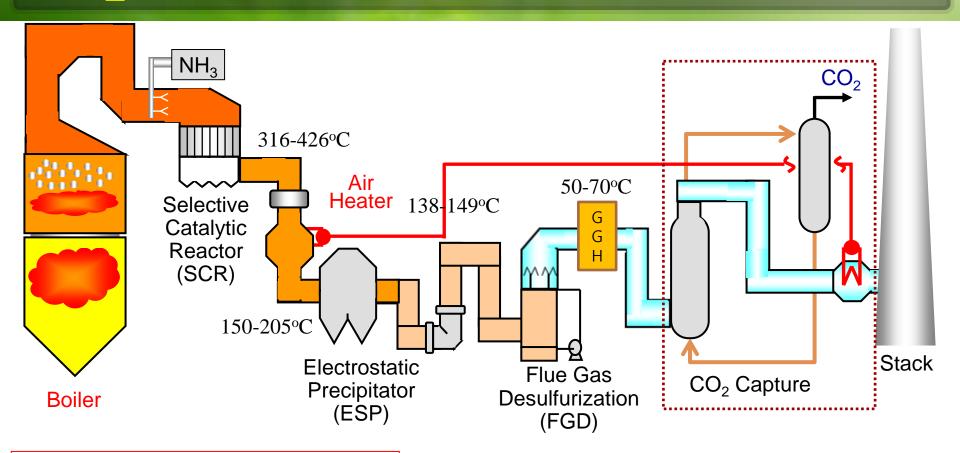
Distribution

Assets	137 B USD
Sales	46 B USD
Generation Capacity	68.848 GW (82.296 GW incl. IPP)
Power Generation	448.517 TWh (509.574 TWh incl. IPP)
Customers	20.050 M households
Employees	19,278
Price	USD 82/ MWh

KEPCO Research Institute

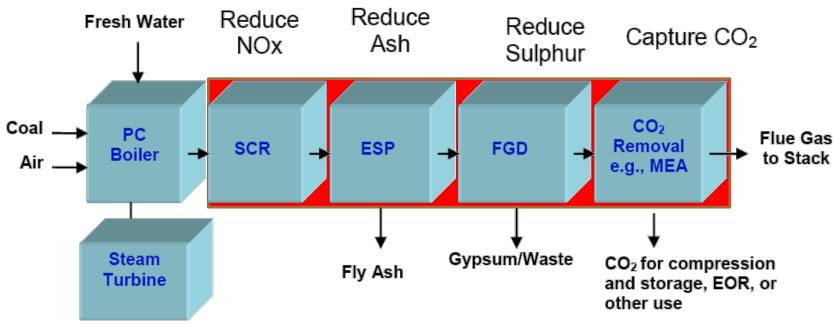

Research Center for Electric Power Industry


We are providing the technology and leading the business


KEPCO's CCS R&DD Strategies

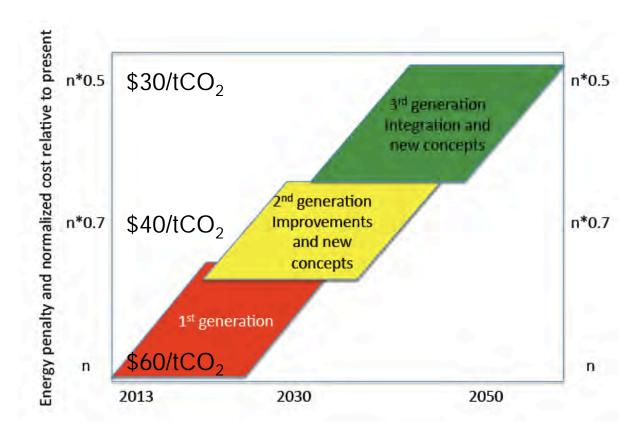
Large CO₂ Capture Plant Sites in Korea

CO₂ Capture System in PC



SCPC: 246 bar/538°C/538°C(500 MW)

SCPC: 246 bar/566°C/566°C(800 MW)


USCPC: 246 bar/566°C/593°C(500/800 MW)
USCPC: 265 bar/610°C/621°C[1000 MW]

Post-combustion process and flue gas composition

Gas constituent	Coal (ST	Natural gas (GT)
Nitrogen (N ₂)	70-75%	73-76%
Carbon dioxide (CO ₂)	10-15% (13-14%)	4-5%
Water vapor (H ₂ O)	8-15% (10-12%)	8-10%
Oxygen (O ₂)	3-4% (3-6%)	12-15%
Trace gases (SO _x , NO _x , others)	<1% (<100 ppm)	<1% (<10 ppm)

Priorities for CCS technology development

CSLF CCS TRM, 2013 (www.cslforum.org)

Current CO₂ Capture Cost: USD 60/tCO₂ (IEA 2011, GCCSI 2013)

Advanced Amine CO₂ Capture Technology

CO₂ Capture plan Plant

R&D strategies

KCCP project

"Development of a wet CO₂ capture technology to be more efficient and cheaper by novel absorbent and advanced process with heat integration"

Novel absorbent

- Low regeneration energy
- High capture efficiency
- Fast kinetics
- Low thermal degradation
- Low corrosion
- Low volatility/foaming

Process

- · Heat integration
- · Improved absorber
- · Advanced reclaimer
- Energy saving system

KEPCO RI's R&D Progress of Wet Scrubbing

0.1 MW CO₂ Test-bed (\$ 8 M)

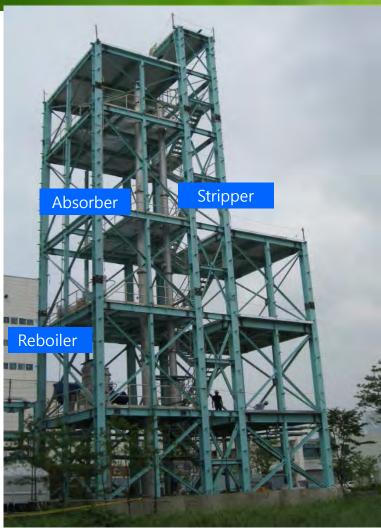
Boryeong Thermal Power Plant (Coal flue gas)

Seoul Thermal
Power Plant (NG flue gas)

Phase 1('00.1~'06.09)
Technology Introduction(ABB)

Phase 2('08.11~'11.06)
Advanced Amine technology

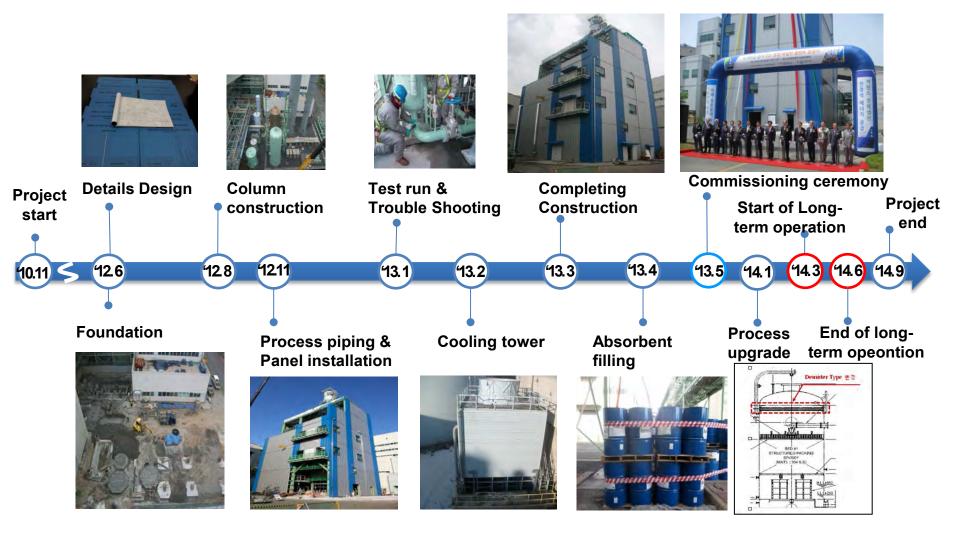
10 MW CO₂ Pilot plant (\$ 42 M)


Boryeong Thermal Power Plant (Coal flue gas)

Phase 3('10.11~'14.09)

Process Scale-up & Demonstration

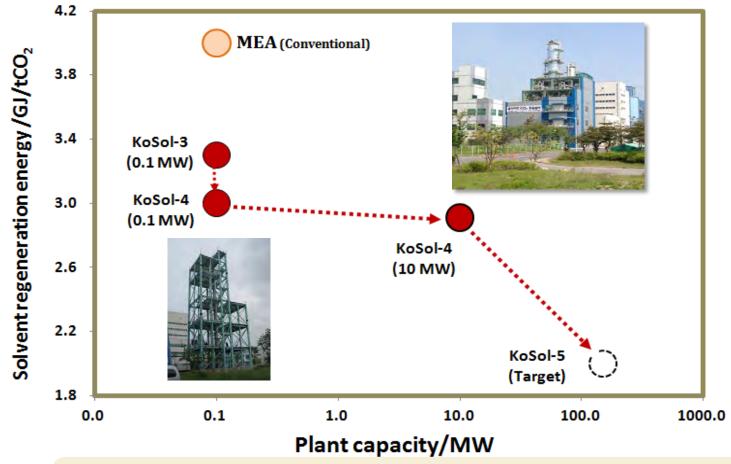
0.1 MW Test bed, Advanced amine


0.1MW Test-bed at Boryeong coal-fired power plant

- □ Scale: 0.1 MW slip-streamed from 500 MW coal-fired power plant(SC)
- ☐ Capacity: 2 tCO₂/d
- ☐ Flue gas: coal-fired boiler
- Solvent: KoSol-3 & 4*
 - \cdot > 90% CO₂ capture
 - · > 99% CO₂ product purity
 - · 3.0~3.1 GJ/tCO₂ regeneration energy
 - (> 3000 hrs continuous campaign)
- ☐ Plot area: LxWxH =12m x 7m x 25m
- ☐ Startup: Oct, 2010
- □ Location: City of Boryeong, Korea. KOMIPO's Boryeong Thermal Power Station (unit #8)

^{*} KoSol: KEPCO's proprietary solvent

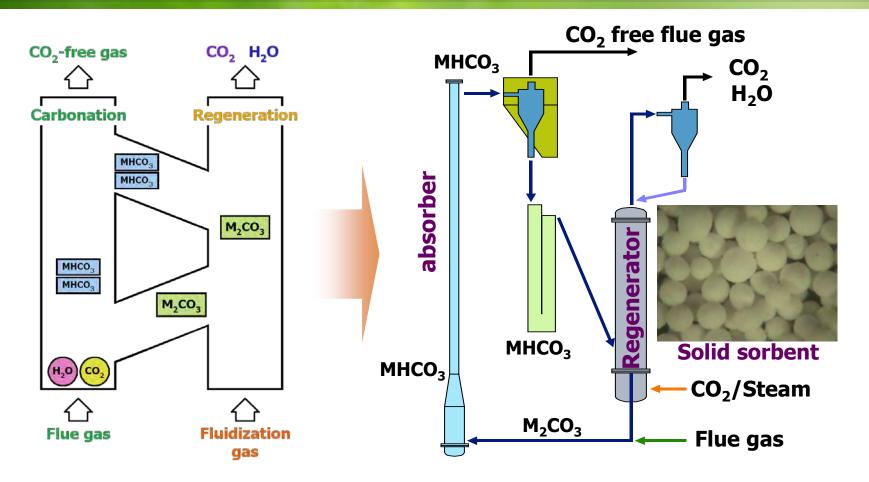
Progress of 10 MW Pilot Plant


10 MW Pilot Plant, Advanced amine

- □ Scale: 10 MW slip-streamed from 500 MW coal-fired power plant(SC)
- Capacity: 200 tCO₂/d
- ☐ Flue gas: coal-fired boiler
- Solvent: KoSol-4 *
 - · > 90% CO₂ capture rate
 - · > 99% CO₂ product purity
 - 3.0~3.1 GJ/tCO₂ regeneration energy (Early test results)
- ☐ Startup: May, 2013
- \Box Plot area: LxWxH = 31m x 31m x 48m
- □ Location: City of Boryeong, Korea. KOMIPO's Boryeong Thermal Power Station (unit #8)

Main Results: Pilot plant test results

Performance of CO₂ capture absorbent (KoSol*)



KoSol series showed ① lower regeneration energy than MEA by 20%

2 higher durability than MEA by 85% 3 less corrosion than MEA by 93%

Dry CO₂ Capture Technology

- **☐** First Cost Reduction Strategies
 - Dual Fluidized-bed Process
 - Solid Sorbents

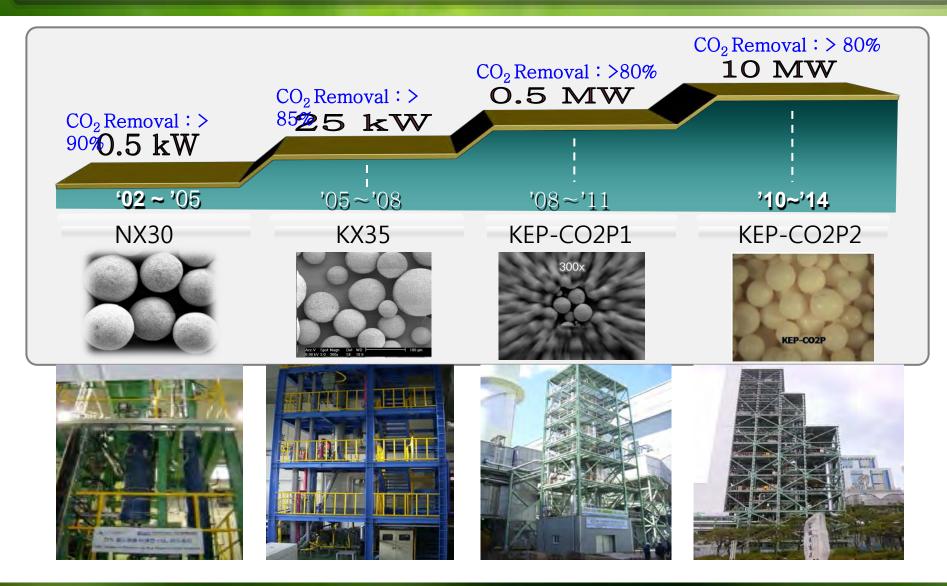
Characteristics of Dry CO₂ Capture Technology

Carbonation

$$K_2CO_3(s)+CO_2(g) + H_2O(g) \rightarrow 2KHCO_3(s)$$

 $\Delta H = -3.25 \text{ GJ/tCO}_2$
 $K_2CO_3 \cdot 1.5H_2O(s) + CO_2(g) \rightarrow 2KHCO_3(s) + 0.5 H_2O(g), \Delta H = -1.0 \text{ GJ/tCO}_2$

Operating temperature: 40-90°C

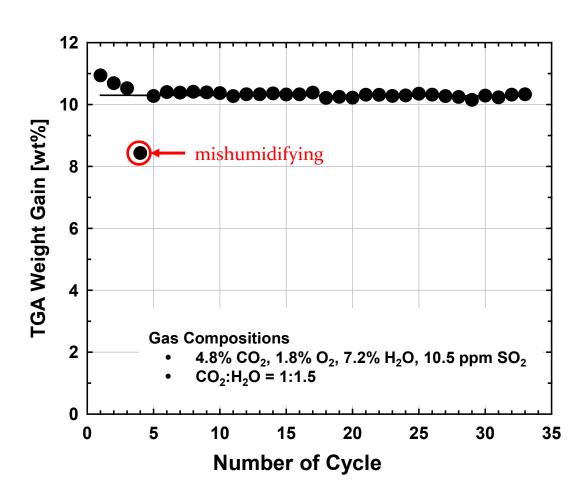

- High sorption capacity (ΔL)
- Less influence of water & pollutants
- Less side reaction w/support
- Little Corrosion & No volatiles
- No waste water
- Easy to control heat for exothermic reaction

Regeneration

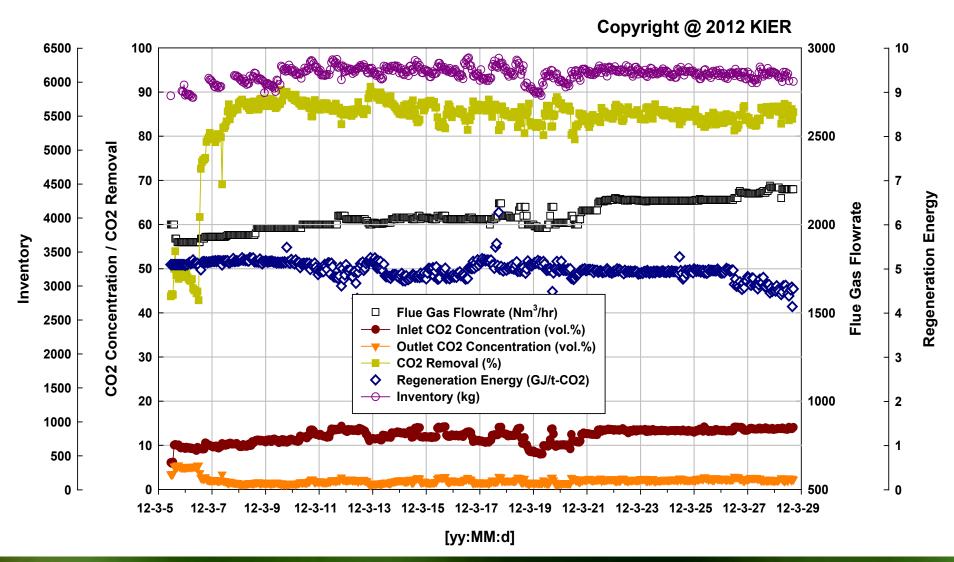
Operating temperature: 140-200°C

- Good Regenerablity (∆L)
- Low C_p
- Low ΔH
- Recover high-concentrated CO₂ after condensing H₂O
- Use waste heat, steam for endothermic reaction
- Fast kinetics with reasonable reaction temperature (40~200°C) & ΔT~60 °C
- Fluidized-bed reactor (mechanical strength (AI), density, size, shape)
- Maintaining integrity of sorbent during multi-cycles

Scale-up (X 20,000/10y)


0.5 MW test-bed: Dry regenerable sorbent

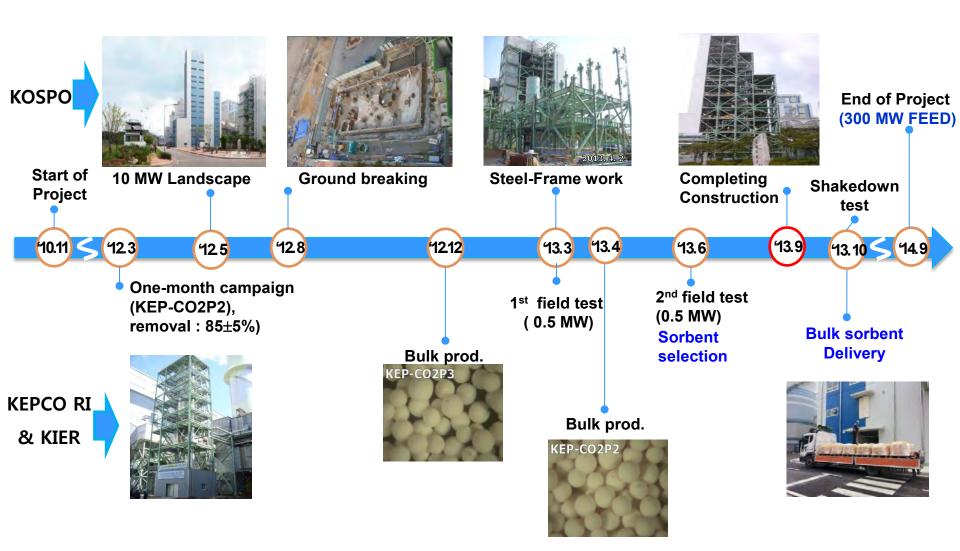
0.5 MW test-bed at KOSPO's Hadong coal-fired power plant, Unit # 3


- □ Scale: 0.5 MW slip-streamed from 500 MW coal-fired power plant(SC)
- \square Capacity: 10 tCO₂/d
- ☐ Flue gas: coal-fired boiler
- □ Process: KIER's Fluidized-bed Process
- **☐** Sorbent: KEP-CO2P2 or P3
 - > 85±5% CO₂ capture rate
 - > > 90% CO₂ product purity
- ☐ Startup: 2010.03.
- □ Plot area: 10x6x24(H) m
- □ Location: Hadong, Korea. KOSPO's Hadong Thermal Power Station (unit #3)

Sulfur influence of KEP-CO2P2 sorbent

○ Maintaining the sorption capacity of sorbent during 33 cycle TGA test

30-day Campaign of 0.5 MW Test-bed



Performance of 0.5 MW Test-bed

Items	1st year('11)	2 nd & 3 rd year('12-'13)	
	KEP-CO2P1	KEP-CO2P2	KEP-CO2P3
Flow rate of flue gas /Nm ³ /h ([CO ₂]/%)	1600-1800 (10)	2050 ± 150 (13.5)	1900±100 (13.5)
Absorption/Regeneration Tem/°C	70/180	70/165~180	70/170~180
Dynamic sorption capacity/wt%	2.2 ~ 3.0	5.4 ± 0.2	5.6(4.0~7.2)
CO ₂ removal rate/%	80 (50 h)	80~85 (~680h)	85~90 (>40h)
Regeneration energy/GJ/tCO ₂	5.6	4.7± 0.3	4.7± 0.3
Attrition resistance Al/%	6	5	3

Current rather high regeneration energy could be overcome by optimization of operation condition as well as improvement of sorbent and process since estimate range of RE is 2.8-5.9 GJ/tCO₂

Construction Progress of 10 MW PP

10 MW Pilot plant: Dry regenerable sorbent

- □ Scale: 10 MW slip-streamed from 500 MW coal-fired power plant(SC)
- \Box Capacity: 200 tCO₂/d
- ☐ Flue gas: coal-fired boiler
- ☐ Sorbent: KEP-CO2P2 or P3
- **□** Targets:
 - > > 80% CO₂ capture rate
 - > > 95% CO₂ purity
 - > > 1000 h continuous operation
 - > US\$ 30/tCO₂
- ☐ Startup: October, 2013
- ☐ Main plot area: 34 (L) x 15 (W) x 59 m(H)
- □ Location: Hadong, Korea. KOSPO's Hadong Thermal Power Station (unit #8)

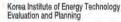
10 MW Pilot Plant at KOSPO's Hadong coal-fired power plant, Unit # 8

IV. Summary

- □ For energy security and climate change, KEPCO offers the comprehensible portfolio of CO₂ capture technology.
- □ Two 10 MW pilot plants (dry sorbent and adv. amine) scaled-up based on the results from 0.1- 0.5 MW test-beds are under operation mode, aiming to bring at least one commercial demo project online by 2015~2018.
- □ KEPCOs with MOTIE's support is moving big steps forwarding to commercialize CCS technology by 2020.
- □ Looking for funding, strategic partners and opportunities to demonstrate our technologies in Korea

Thank You

Hadong Project



Boryeong Project

