ZERT Controlled Release Facility

Montana

Near-surface detection systems are potentially desirable for public assurance

When we built this facility, detection systems had been deployed at sequestration pilot sites

These pilot were well chosen and do not leak

They have also been used at volcanic sites – but these likely have much higher fluxes than one would see in CCS systems

As a result, near-surface detection techniques had not been adequately tested

What Are Relevant Release Rates?

- 4 Mt/year injection from 500 MW power plant
- 50 years injection Total of 200 Mt Injected
- Consider maximum leakage rates discussed to mitigate climate change
 - 1% over 100 years = 0.01% / year = 0.0001
 - 1% over 1000 years = 0.001% / year = 0.00001
- 200,000,000 x 0.00001 = 2,000 Tonnes / yr
- 5.5 Tonnes / Day
- This is the equivalent of about 84 idling cars

Injection Rate

What are relevant feature sizes, scaling factors?

- Two leakage pathway concerns are Wells and Faults
- Envisioned faults ~1km in length and 10 100 m wide in surface expression
- A shallow horizontal well of ~100m in length could represent 10% and 1% of these cases, respectively
- Release between 10% to 1% of the 5.5 tonnes/day through a horizontal well ~100m in length – 0.55 – 0.06 tonnes / day
- Actual release rates used 0.3 0.1 tonnes/day (equivalent to between 5 and 1 idling cars)

Field Test Facility

EST 1943

🤟 WestVırginiaUniversity.

Site Soil Characteristics

Horizontal Well Installation

Horizontal Well Installation

Ray Solbau, Sally Benson

Large Number of Participants / Methods

47 investigators31 instruments / sensor arrays5 univ. 6 DOE labs, 4 companies

Investigator	Institution	Monitoring	Number of Sensors
		Technology	
Arthur Wells	National Energy	Atmospheric tracer	1 tower (4m)
Rod Diehl	Technology Laboratory	plume measurements	Blimp (Apogee
Brian Strasizar			Scientific) with 3 tether
			line samplers
		Bee hive monitoring for	2 hives
		tracer with sorption tube	
		and pollen trap	
		Automated Soil CO ₂	4 chambers
		flux system	
William Pickles	University of	Hand held hyperspectral	1 instrument
Eli Silver	California- Santa Cruz	measurements (plant	
Erin Male		health)	
Yousif Kharaka	United States	Ground water	1 EC and temperature
James ThordsenGil	Geological Survey*	monitoring	probe, Dissolved
AmbatsSarah Beers			oxygen probe, lab
			analysis of water
			samples
Henry Rauch	West Virginia	Water monitoring well	1 sensor
	University	headspace gas sampling	
Lucian Wielopolski	Brookhaven National	Ineleastic neutron	1 instrument
Sudeep Mitra	Laboratory*	scattering (total soil	
		carbon)	
Martha Apple	Montana Tech*	Soil moisture, temp.	5 sensors
Xiaobing Zhou		Chlorophyll Content	
Venkata Lakkaraju		Meter, Fluorescence	
Bablu Sharma		Meter, LI-COR 2000 to	
+2 students		measure leaf area index	
		Leaf Porometer to	
		measure stomatal	
		conductance	
		Infrared radiometry	2 instruments
		(plant health)	
		Atmospheric humidity	1 sensor each
		and temperature,	
		accumulated rainfall	
		Plant root imaging	1 camera
		Soli conductivity	1 sensor
		Handneid nyperspectral	1 instrument
		measurements (plant	
W/III. II. II		neaitn)	
william Holben	University of Montana*	Microbial studies	Lab analysis
Sergio Morales			

Large Number of Participants / Methods

7ED	Zero Emissions
Z.L.N.	Technology

Investigator	Institution	Monitoring	Number of Sensors
	~ ~	Technology	
Lee Spangler	Montana State	Water content	15 sensors
Laura Dobeck	University	reflectometers (soil	
Kadie Gullickson		moisture)	
		Automated soil CO ₂	5 long term
		flux system	chambers, 1 portable
			survey chamber
		CO_2 soil gas	6 sensors
		concentration	
Kevin Repasky (PI)	Montana State	Underground fiber	4 sensors
Jamie Barr	University	sensor array (CO ₂ soil	
		gas concentration)	
Rand Swanson	Resonon*	Flight based	1 instrument
		hyperspectral	
		imaging system	
Joseph Shaw (PI)	Montana State	Multi-spectral	1 instrument
Justin Hogan	University	imaging system (plant	
Nathan Kaufman		health)	
		Meteorological	1 tower
		measurements	
Julianna Fessenden	Los Alamos National	In situ (closed path)	1 instrument
+3 students	Laboratory	stable carbon isotope	
		detection system	
		Flask sampling for in	Lab analysis
		situ isotope detection	
Sam Clegg	Los Alamos National	Frequency-modulated	1 instrument
Seth Humphries	Laboratory	spectroscopy (FMS)	
		open-air path	
Thom Rahn	Los Alamos National	Eddy covariance	1 tower
	Laboratory		
James Amonette	Pacific Northwest	Soil CO ₂ flux	27 chambers
Jon Barr	National Laboratory	(steady-state)	
Sally Benson (PI)	Stanford University*	Commercial cavity	1 instrument
Sam Krevor	/ Picarro	ringdown real-time	
Jean-Christophe	Instruments*	measurements of $\delta^{13}C$	
Perin		and CO ₂ in air	
Ariel Esposito			
Chris Rella (Picarro)			
Greg Rau	Lawrence Livermore	Commercial cavity	1 instrument
Ian McAlexander	National Laboratory	ringdown real-time	
(LGR)	/Los Gatos Research*	measurements of $\delta^{13}C$	
		and CO ₂ in air	
Jennifer Lewicki	Lawrence Berkeley	CO ₂ soil gas	8 sensors
	National Laboratory	concentration	
		CO ₂ atmospheric	2 sensors
		concentration	
		Chamber soil CO ₂	1 instrument
		flux measurements	
		Meteorological	1 tower

In Situ Laser Isotope Measurements

• Los Alamos NATIONAL LABORATORY

Seth Humphries, Samuel M. Clegg,

Signature of ${}^{12}CO_2$ and ${}^{13}CO_2$ over the pipe (black) and away from the pipe (red). Note that due to the high concentration of CO2 over the pipe the FMS response is in saturated conditions

Underground Fiber Sensor

Jamie Barr

Kevin Repasky

Hollow core where the light interacts with the carbon dioxide

Flux Chamber

50 m

0

mmm

lui)

Shallow CO₂ Flow Modeling (1)

C. Oldenburg (LBNL)

TOUGH2/EOS7CA was used to address the origin of patchy emissions at the ZERT shallow-release experiment.

Shallow CO₂ Flow Modeling (2)

C. Oldenburg (LBNL)

Results suggest that packer locations influence emission patterns.

 $q_{CO2} = 100 \text{ kg CO}_2/\text{day}$ Base Case (6 zones) Case 1 (23 zones) Three-dimensional results of X_a^{CO2} X^{CO2}_g at t = 3 days showing patchy plane at Z = 8,975 m plane at Z = 8.975 m 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 emission pattern. Y (m) t = 1.5 hr t = 1.5 hr 40 80 60 10 60 80 100 X (m) X (m) Xgcoz plane at Z = 8.975 m plane at Z = 8.975 m 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Y (m) (m) X t = 12 hr t = 12 hr10 40 100 20 60 80 100 40 X (m) X (m) Patches are correlated with packer locations and highλ (m) 0 elevation regions in each zone in the soil material. 20 + 40 3 60 • With more packers (i.e., more zones), there are still early breakthroughs but overall emission is less patchy. • Therefore, simulations support the hypothesis that along-80 pipe flow of CO₂ upwards within each zone leads to an 100 10 effective point-source release that creates a persistent

Z (m)

patchy emission.

Eddy covariance net CO₂ flux monitoring

BERKELEY LAB

An eddy covariance (EC) station was deployed ~30 m NW of the release well in 2006, 2007, and 2008.

In 2008 (0.3 t $CO_2 d^{-1}$ for 1 month) leakage signal was detected in raw EC CO_2 flux (F_c) data. Ecosystem CO_2 fluxes were modeled and removed from F_c to improve signal detection in residual flux (F_{cr}) data.

J. Lewicki (LBNL)

A least-squares inversion of measured residual CO_2 fluxes and corresponding modeled footprint functions during the 2008 release modeled the distribution of surface CO_2 fluxes, allowing us to locate and quantify (to within 7%) the leakage signal.

Studying the vegetation response to simulated leakage of sequestered CO2 using spectral vegetation indices 0.50 (a) Station 2 Ecological r= -0.90 p = 0.0020.40 Informatics 5 (2010) 379-389

Montana Tech

Venkata Ramana Lakkaraju, Xiaobing Zhou, Martha E. Apple, Al Cunningham, Laura M. Dobeck, Kadie Gullickson. Lee H. Spangler

Hyperspectral Imaging Unsupervised Classification

Kevin Repasky

Geochemical Monitoring

USGS, LBNL, EPRI, WVU, MSU - Environ Earth Sci (2010) 60:273–284 Liange Zheng, John A. Apps, Nicolas Spycher, Jens T. Birkholzer, Yousif K. Kharaka, James Thordsen, Sarah R. Beers, William N. Herkelrath, Evangelos Kakouros, Robert C. Trautz, Henry W. Rauch Kadie S.

Gullickson

Geochemical Monitoring Environ Earth Sci (2010) 60:273–284 Int. J. Greenhouse Gas Control (2011

USGS, LBNL, EPRI, WVU, MSU Liange Zheng, John A. Apps, Nicolas Spycher, Jens T. Birkholzer, Yousif K. Kharaka, James Thordsen, Sarah R. Beers, William N. Herkelrath, Evangelos Kakouros, Robert C. Trautz

- (1) calcite dissolution could be the primary process buffering pH and releasing Ca+2 in groundwater,
- (2) the increase in the concentrations of major cations and trace metals except Fe could be explained by Ca+2-driven exchange reactions,
- (3) the release of anions from adsorption sites due to competing adsorption of bicarbonate could explain the concentration trends of most anions, and
- (4) the dissolution of reactive Fe minerals (such as fougerite) could explain the increase in total Fe concentration.

Atmospheric monitoring of a perfluorocarbon tracer at the 2009 ZERT Center experiment

NETL

Natalie Pekney , Arthur Wells , J. Rodney Diehl, Matthew McNeil, Natalie Lesko, James Armstrong, Robert Ference Atmospheric Environment 47 (2012) 124e132

Atmospheric monitoring of a perfluorocarbon tracer

Methods

- Soil Gas Monitoring
- In-situ soil gas probes
- Eddy Covarience
- Soil Flux chambers
- Differential Absorption LIDAR
- Cavity ring-down, other isotopic measurements
- Water chemistry
- Tracers
- Hyperspectral / mutispectral imaging
- Many more

What We Have Learned

- Many near surface methods are quantitative <u>but</u>
 - Diurnal, seasonal, annual variations in ecosystem background flux affect detection limits
 - Appropriate area integrated, mass balance is a challenge
- Nearly all methods could detect 0.15 tonnes / day release at ZERT site.
- Isotopes & tracers have lower detection limits than straight CO₂ flux or concentration
- Scaling, 6 tonnes per day would be detectable over an area 40 times as large
- Surface expression was "patchy" 6 areas of ~5m radius
- Natural analogs also seem to have "patchy" surface expression
- Will engineered systems that leak have similar properties?

Acknowledgement

This work was carried out within the ZERT project, funded by the

- **Department of Energy -Fossil Energy** and the
- National Energy Technology Laboratory under Award No. DE-FC26-04NT42262

Atmosphere Biosphere

Soil (Vadose & Shallow Saturated Zones

Caprock & Deep Overburden

Injection Zone

Monitoring Zones

• Atmosphere

- Ultimate Integrator
- Dynamic
- Monitoring & Modeling

• Biosphere

- dynamic
- requires protection
- opportunity for wide area monitoring but indirect methods
- Soil
 - Integrates
 - dynamic
- Aquifers
 - Integrates
 - Requires protection

34

What Is the Monitoring Purpose?

- Climate change mitigation?
 - 1% over 1000 yrs climate models?
- Retention in the reservoir?
 - Subsurface techniques typically do not measure properties directly proportional to concentration / quantity
- Overall storage security?
- HSE, Resource protection (USDW)?
 - Measure to ensure levels are below impact levels
- Public assurance?
- Verification and accounting?
 - Mass flow meters only accurate to $\sim 1\%$

What Are Relevant Fluxes?

Mechanisms, their transport rates and <u>relative</u> rates will affect:

- Residence times and quantities
- Induction periods
- Flux (both area and rate)

What Are Relevant Fluxes?

- Simple model assumes 1st order rates (exp functional form) and solves three coupled differential equations.
- GHG mitigation relevant rates are used so effective time constant is very large (rates small)
- Under these conditions, most functional forms should be quasilinear and qualitative results would be similar
- Allows support for "thought experiments" concerning induction periods, secondary accumulation, etc.

Test Case One Excellent Seal

Two Good Seals

Induction Period

