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Sandia Technologies  
Monitoring Systems 
Design, Installation, 

HS&E 

Denbury Resources 
Field owner and 
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           Real-time monitoring – BHP, BHT, AZMI, DTS  
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Research-based Cranfield Monitoring Plan 

• Research-based: not  regulatory- or risk-based 
– Scoped, designed, and budgeted 2006, prior to 

regulation 

– Operator holds risk 

• Designed to respond to DOE programmatic 
questions 
 Lessons learned are derived products not 
 processes to be duplicated  

 
 

 



Cranfield Geologic Setting 

 

 

Natchez  
Mississippi 

Mississippi River 

Illustration by Tip Meckel                                                             

Oil and gas field 
Discovery 1943 
Depth 3000 m  
 15 m thick lower Tuscaloosa  Fm.  
Heterogeneous fluvial sandstones 
Pipeline CO2 from Jackson Dome 
@ 1 Million metric tones/year 
 
 

Mississippi 



DAS 

Seismic line from 3-D survey, Cranfield reservoir, Mississippi 
interpretation Tip Meckel BEG 
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Tuscaloosa D-E oil reservoir 

Oil-water contact 

Tuscaloosa confining system 

W E 
Stacked Storage: Use in early stages (Now!) provides 

access to long term storage 

Step 1 Extract oil via 
CO2 EOR with storage Step 2 Storage in 

adjacent brine-filed 
pore volumes 



 Regional Carbon Sequestration Program 
goal: Improve prediction of storage 

capacities 
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Production history 
37,590,000 Stock tank 

barrels oil 
672,472,000 MSCU 

gas 
(Chevron, 1966)  

7,754 acres x 90 ft net 
pay x 25.5% porosity 

(Chevron, 1966)  
 

Existing data 
on reservoir 
volumetrics 

X E  [pore volume occupancy (storage efficiency)] = Storage capacity 

injection rate – limited by pressure response?   

Measure saturation 
during multiphase 
plume evolution 

Increase predictive 
capabilities by  

validating numerical 
models 

Observation: pore 
volume occupancy 

was rate and 
dependent: not a 

single number 



Regional Carbon Sequestration Partnership program 
goal: Evaluate protocols to demonstrate that CO2 is 

retained 

Oil and gas trapped 
over geologic time 

High confidence in storage permanence 
through characterization 

Uncertainty and risk assessment 

P&A well performance 
in retention? 

Limited analogy 
between  injected and 
natural fluid retention 

AZMI 
pressure 

IZ pressure Microseismic 
4-D 

Seismic 4-D VSP 

Research 
Questions 

Selected 
assessment 
approach 

Material Risk 
of failing to 
retain 

Well-pad 
vadose 

gas 
Ground 
water 
chem. 

shallow 

deep 

Semi-quantitative assessment 
via Certification Framework 

Off structure 
migration? 

Response to pressure 
elevation? 

Protocol 
Sensitivity & 
reliability  



 
Monitoring layout  
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Phase II 

Pipeline head& 
Separation facility 

 5km 

GIS base Tip Meckel, BEG 

Psite 
EGL-7 

Detail Area 
Study 
(DAS) 

Injector 

Producer  
(monitoring point) 

Observation Well 

4-D seismic 

RITE Microseismic 



Monitoring Innovations 

• Groundwater monitoring 
• Soil gas monitoring 

Aquifer and USDW 

  

 Atmosphere 

  
 Biosphere 

Vadose zone 

 CO2  plume 

Shallow groundwater 

 

• Pressure in above-zone 
monitoring interval 

• Process-based vadose zone-
gas method 

• In situ rock-water-CO2 
interaction test.  

• Contaminated site approaches 

• Stacked storage demonstration 
• Cross-well ERT at depth 
• Bore hole gravity 
• Methane exsolution 
• RITE microseismic 



Monitoring  Design 

Soil gas 

Atmosphere 

Area tested Whole plume Focus study 

Not tested Not tested 

Active and P&A 
well pads 

Groundwater 

Shallow 
production 

 AZMI 

Injection zone 

Not tested 

 EGL-7 UM test well, 
 Push-pull test 

Not tested 

Not tested 

Geochemistry 
breakthrough 

Geo- 
mechanics 

RITE micro seismic 
study 

GMT(failed) 

“P site”  methodology 
assessment 

Monitoring well at each  
injector 

DAS pressure  and EGL 7 
pressure + fluids 

DAS multi-well multi tool 
array 
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Detail Area 
Study DAS 

H Zeng, BEG 10cm 

 5km 

Seismically non-unique interpreted form lines 

Lower Tuscaloosa  sand and conglomerate  fluvial 
depositional environment 



M. Kordi , BEG 

Ambrose 

 
 
 
 
 
 
 
 
 
 

Fluvial Facies concept 

30-m apart 



Time lapse seismic analysis 
DAS DAS 

DAS 

2007 Pre-injection 
2010 1 year of injection about 1/4 
million metric tons this area 

Difference 

Rui Zhang, CFSES & UTIG 



Detailed Area Study (DAS) 
Injector 
CFU 31F1 

Obs  
CFU 31 F2 

Obs  
CFU 31 F3 

Above-zone 
monitoring F1 F2 F3 

Injection Zone 

Above Zone Monitoring 

10,500 feet BSL 

Closely spaced 
well array to 
examine flow in 
complex reservoir 

68m 

112 m 

Petrel model Tip Meckel 

Tuscaloosa D-E 
reservoir 



LLNL Electrical Resistance Tomography- 
changes in response with saturation 

F2 F3 

C. Carrigan,  X Yang, LLNL 
 D. LaBrecque  Multi-Phase Technologies 
 

F1 



Fluid sampling via U-tube yields data on 
flow processes  

• Small diameter sampler 
with N2 drive brings fluids 
quickly  and high frequency 
to surface with tracers 
intact 

• High labor effort 

• Unique data on fluid flow 

 

UTDoG,   

Adding tracer 



As injection rate increased, plume 
thickness increased 

112 m 

Injection at  1/8 million ton/year 

8 days 

Injection at  1/4 million ton/year 

4 days? 8 days 

March-April 2010 tracer studies: 
 Jiemin Lu, Changbing Yang,  GCCC 
Tommy Phelps ORNL 
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CFU31F-2,  68 m away from injector  

CFU31F-3, 112 m away from injector  

Travel time = 317 h 

Travel time = 319 h 

SF6 

SF6 

2nd SF6 on May 9 
255 h 

Arrive on May 20 

Arrive on May18 
211 h 

Jiemin Lu, GCCC 



Continuous field data from dedicated monitoring well 
• Large perturbations obvious  
•  Even small perturbations observable   (100’s tons/day flux from 1 km)  
•  Fault observed to be sealing  

Meckel et al., in review 



 
 
 

surface 

Surface casing 
Cemented in 

Cement to 
isolate 

injection 
zone 

AZMI Above zone monitoring interval 
Time 
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Injection 
zone 

AMZI 

 Confining = No fluid communication 

Using above AZMI pressure to assess 
storage permanence 



Pressure Monitoring 

CO2 Injection Zone 

Above-Zone  Monitoring  Interval (AZMI) – leakage detection 

 Within Injection Zone (IZ) reservoir management 
 Daily injection rate 

2000 

1000 

30 m 

Metric ton/day 

300 

310 

AZMI  
bars 

300 

350 

400 

IZ  
bars 

T. Meckel BEG 



Groundwater monitoring strategy 

Characterize shallow groundwater geochemistry 

Identify a set of geochemical parameters for detecting CO2 leakage 

Lab experiments 

Field experiments 
(Push-pull tests) 

Numerical modeling 

Test and validation 

Groundwater 
chemistry 
monitoring for 
detecting  CO2 
leakage 

Application 

Changbing Yang BEG 



Groundwater Monitoring 

• Each injection well 
has a 200-300 ft deep 
groundwater well 

• Quarterly 
geochemical 
monitoring by 
University of 
Mississippi,& 
Mississippi State 

• Sensitivity studies: lab 
to field 

CO2 injection 

Changbing Yang, 
BEG 



Using a push-pull field test to validate 
models under insitu redox conditions 
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Vadose Zone Monitoring via   
Process Accounting  

Katherine Romanak BEG 



Leak 

Mask signal 

Soil moisture 
Soil carbonate 

Dampen signal 

Organics → CO2 

Plant activity  

Produce CO2 
Concentrate CO2 

Consume CO2 

Disperse CO2 

Produce, 
consume, 
redistribute 
CO2 

Background 
“noise” 

Weather fronts  

Challenges to Near-Surface Monitoring 

Stored CO2 

Failed 
containment 

Vadose 
zone 

Katherine Romanak BEG 



CO2 concentrations at different depths 
CO2 concentration alone may not reliable indicator for leakage 

detection 
 

• CO2 concentrations show variations in depth, average CO2 conc. 
~350 ppm in the atmosphere, ~630 ppm at depth of 1.5 m below 
surface show, and ~99000 ppm at depth of 3 m over the 
observation time period 
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Katherine Romanak Changbing Yang 



Soil gas composition  - Unique leakage signal 

CH4 < 34 vol. %  

CO2 < 45 vol. 
% 

N2  42-85% 

O2  2- 21% 

Soil gas distribution 

CH4+2O2 CO2+ 2H2O 

CH2O+ 2O2  CO2+ H2O 

Methane oxidation 

Org. oxidation 

Katherine Romanak BEG 



Remaining Activities 
• Knowledge sharing 

– Technical and public and policy 
• Analysis of data collected 

– Joint/comparative inversions 
– NRAP 
– SIM-SEQ 
– Basic Energy Sciences – EFRC’s  

• Continued data collection 
– Report volumes injected and pressure response 
– Continue groundwater and soil gas observation 
– EGL7  deconstruction (DOE-Schlumberger Carbon Services) 

• RITE microseismic array – collect microseismic data 
• Use of DAS  obs. well for DOE-LBNL  CO2 geothermal test 
• Support for CCUS concept 

 



Conclusions 
• Stacked Storage Demonstrated 
• Project objectives attained 

– Long term monitoring continues 
• Innovative techniques for permanence 

assessment:  
– AZMI pressure 
– Groundwater testing to determine sensitivity 
– Fixed gas soil gas method 

• Capacity is rate dependent 
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