The Ginninderra greenhouse gas controlled release facility

Carbon Sequestration Leadership Forum Monitoring Workshop 18 April 2013

© CO2CRC
All rights reserved

CO2CRC

GA-CO2CRC controlled release facility

- Collaboration between Geoscience Australia and the CO2CRC
- Hosted at CSIRO Ginninderra Experiment Station
- 800 hectares of cropping/grazing land
- 10km from centre of Canberra
- All year access

GA-CO2CRC Greenhouse gas controlled release facility, Ginninderra, ACT

Horizontal well and packers

- Based on ZERT facility
- 125mm φ HDPE pipe x 120m long
- Slotted every 0.5m over 100m, installed 2m deep
- Six release chambers

Sandy loams and clays with occasional coarse gravel

CO₂ supply

- 2.5t liquid CO₂ tank
- Maximum CO₂ capacity is 600 kg/d
- First sub-surface release
 100kg/d (over 5 chambers)
- δ^{13} C of CO₂ ~ -18‰ (source is primarily from an ethanol plant)

000000000000000000000

Pre-release: above ground experiment (2010)

60 kg CO₂/d

Atmospheric tomography (Bayesian inversion)

00000000000000000000000

© 2012 Google Maps

Simultaneous localisation and quantification

00000000000000000

Scaling up: Atmospheric CO₂ sensor array (CO2CRC Otway Stage 2B)

- 9 15 t/d controlled CO₂ releases
- Sensors 150 470m from release pt

1st sub-surface release at Ginninderra (March – May 2012)

- Release rate 100 kg/d CO₂
- 8 x CO₂ (Vaisala GMP343) atmospheric sensors (solar powered, wireless network)
- 37 x 1m deep soil gas wells (8 surveys: CO₂, CH₄, C-13, N₂, O₂)
- Soil flux ~ 150 sample sites
- Eddy covariance (LICOR) tower
- Kr tracer (released in one chamber; soil gas, atmospheric samples)
- Electromagnetic survey (EM31)
- Soil community DNA analysis (0, 3, 15, 30m transect)

Wireless atmospheric CO₂ sensor array - Ginninderra

Soil flux

- Soil flux took ~4 weeks to stabilise
- Reasonable quantification

000000000000000000000

Soil gas vs soil flux

- Detected changes in soil gas after only 4 hrs, 15m from hot spot
- Considerable lag between surface expression of soil flux and sub-surface soil gas (1m deep)
- Detected Kr tracer in 1m deep well, 30m from horizontal well
- Surface CO₂ expression much less than sub-surface footprint (not "V" shaped)

Challenge: locating a surface leak

- Quantification ok, but finding leaks in the first place is tricky
- Model simulations suggest a diffuse leak (100mx100m) 1km from single atmospheric station needs to be ~50t/d before statistically detectable
- Point source ~ 20t/d at 1km

GA-CSIRO Arcturus atmospheric baseline station, Central Queensland

2nd release at Ginninderra (Oct - Dec 2012)

Focus on finding leaks using surface techniques (100 kg/d)

- Airborne hyperspectral
- Ground penetrating radar
- In-field phenotyping
- Electromagnetic surveys
- Walking around!

Flying around?

UAV rotorcraft equipped with CO₂ sensor

Photo courtesy of Florian Poppa, ANU

Summary

- Important facility for testing concepts, technologies and approaches
- Results used as basis for up-scaling (e.g. atmospheric tomography, phenotyping, UAV)
- CO₂ surface expression less than sub-surface footprint (no "V")
- Quantification techniques work but require significant processing
- Finding small surface leaks over large areas is challenging
- Looking for method cross-validation opportunities

Researchers

Charles Jenkins, Ulrike Schacht, Henry Berko, Steve Zegelin, Tehani Kuske, Richard Dunsmore, Jonathan Ennis-King, Ryan Noble, Andrew Feitz

Ray Leuning, Xavier Sirault, Jose Jimenez-Berni

David Griffith, Ruhi Humphries, Chris Caldrow

Andrew McGrath, Jorg Hacker

Uwe Zimmer, Florian Poppa

0000000000000000000000

Laura Dobeck, Lee Spangler

With thanks to Phil Dunbar (CSIRO) and Field Engineering Services (GA)

CO2CRC Participants

Supporting Partners: The Global CCS Institute | The University of Queensland | Process Group | Lawrence Berkeley National Laboratory CANSYD Australia | Government of South Australia | Charles Darwin University | Simon Fraser University

