

Update on IEAGHG activities

Tim Dixon IEA GHG R&D Programme

CSLF Technical Group, 17 April 2013

www.ieaghg.org

Update on CSLF Collaboration with IEAGHG

Arrangement between CSLF Technical Group and IEA GHG

- How CSLF TG/PIRT and IEA GHG will interact for mutual benefit through increased co-operation
 - Mutual representation of each at CSLF TG and IEA GHG ExCo (no voting)
 - Liaison with PIRT co-chairs to discuss potential activities or projects – two way process
 - Activities would require approval by ExCo or TG
 - Due reference to org providing the resource
- Agreed by IEAGHG ExCo Oct 2007 and CSLF Technical Group Jan 2008

IEA GHG – Study generation

CSLF proposed studies

- 'Development of Storage Coefficients for CO2 Storage in Deep Saline Formations'. IEAGHG Report 2009/13. Presentation at CSLF TG Mar 2010
- 'Geological Storage of CO₂ in Basalts', IEAGHG Report 2011/TR2. Presentation at CSLF TG Sep 2011
- Potential Implications of Gas Production from Shales and Coal for CO₂ Geological Storage. ARI. Report due to be published 2013
- Additional new study ideas invited from CSLF TG/PIRT
- Outline required by 1 June 2013

Update on IEAGHG activities

www.ieaghg.org

Recent Reports

Title	Contractor	Report number	Publication date
Operating Flexibility of Power Plants with CCS	Foster Wheeler	2012/6	July 2012
Gaseous Emissions from Amine Based Post Combustion $\rm CO_2$ Capture Processes and their deep removal	CSIRO	2012/7	May 2012
CO ₂ Capture at Gas Fired Power Plants	Parsons Brinckerhoff	2012/8	July 2012
Barriers to Implementation of CCS: Capacity Constraints	Ecofys	2012/9	August 2012
Financial Mechanisms for Long-Term CO ₂ Storage Liabilities	ICF International	2012/11	September 2012
CCS at Iron and Steel Plants	MEFOS	2012/14	December 2012
Integration of Solar Energy Technologies with CCS	IEAGHG	2012/TR1	2012

Reports pending

Title	Contractor	Publication date
Key Messages for Stakeholders	Univ. Edinburgh	2013
Induced seismicity	CO2CRC	2013
Post Combustion Capture Scale Up and Challenges	Black & Veatch	2013
Subsurface resource interactions	CO2CRC	2013
Incorporating future technological change in existing capture plants	IC Consulting	2013
Implications of Gas Production on Shale's and Coals	ARI	2013
CO ₂ Migration Mitigation Options	CO2GeoNET	June 2013
Non CO ₂ Gases – A review	IEAGHG	August 2013
Dehydration of CO ₂	AMEC	July 2013
Bio Methane	Ecofys	June 2013

Studies underway

Title	Contractor	Publication date
CO2RiskMan	DNV	December 2012
Non CO_2 Gases – A review	IEAGHG	2013
CO ₂ Migration Mitigation Options	CO2GeoNET	2013
Dehydration of CO2	AMEC	2013
CO ₂ Test Injection Development Process	CO2CRC	2013
Monitoring Selection Tool	BGS	December 2014
Assessment of Costs of Capture at Baseline Plant	Foster Wheeler	2014
Evaluation of reclaimed waste disposal for $\rm CO_2$ Post Combustion Capture	Trimeric Corporation	July 2013
Biomass CCS – accounting for Negative Emissions	Carbon Counts	May 2014
CO ₂ storage efficiency in aquifers	EERC	December 2013

Interaction of CO₂ with Subsurface Resources

- Study undertaken by CO2CRC and Lead by GNS in conjunction with Alberta Innovates – Technology Futures and BGS
- Aim of Study:
 - review potential subsurface interactions including some case studies. Provide a checklist of potential interactions and impacts and management options.
- Study aimed primarily at policymakers

Interaction of CO₂ with Subsurface Resources

- Outline of Report
 - Short technical background for policymakers
 - Subsurface geological resources and potential interactions with CO₂
 - Case Studies
 - Resource Interaction Issues and their Resolution

Subsurface Resources

Case Studies

- Groundwater Cassem (UK)
- Natural gas storage Hewett gas field (UK)
- Geothermal Delft (Netherlands), Paris Basin (France)
- Waste disposal Sellafield (UK), Gorgon (Australia)
- Oil and Gas North Sea,
- Pressure Transmission Zama (Canada)
- Gas over bitumen/ oil Alberta (Canada)

Potential Influences of CO₂ Storage

Resource	Positive	Negative
Oil	Might increase sweep efficiency hence more	Pressure interference with existing operations;
	effective resource use; EOR can offset cost of	contamination of oil; infrastructure conflict; timing delays
	storage, but not always usable; creates demand	to CO_2 storage if EOR not feasible or wanted
	for CO ₂ and hence improvement of capture	
	technology; similar industries and service and	
	supply needs; possible pressure enhancement	
Gas	EGR possible in some reservoirs (though rarely	High cost of separating CO_2 from the produced gas if they
	done); possible pressure enhancement	mix; pressure interference with existing operations
Coal	CO_2 can flush out methane, creating valuable by-	CO ₂ would sterilize coal for mining or underground
	product	gasification
Groundwater	Could re-pressure low-productivity aquifers;	Could acidify or contaminate potable water, or change
	pressure-relief wells used to increase CO ₂	hydraulic heads through pressure interference
	injection rates might produce useable water	
Dissolved	CO_2 could flush or displace saline water,	CO_2 might react with some dissolved mineral salts,
minerals	enhancing water, and hence mineral extraction	plugging pores
Geothermal	Better heat transfer medium than water; possible	High temperatures might increase risk of corrosion;
	pressure enhancement	possible pressure interference with existing operations
Natural gas	Nil	Pore space unavailable for CO_2 storage for life of gas
storage		storage facility; pressure interference with existing
		operations
Waste	Nil	Pressure effects or the presence of CO_2 may affect waste
1. 1	1	

Major factors in Regulatory Decisions

- Checklist created includes the factor, stage, scale, resource type, examples, references
 - Priority of use
 Timing of interaction
 Risk assessment
 Storage capacity
 Improved recovery
 Resource sterilisation
 Injectivity

- Seal integrity
- Pressure fronts
- Surface Deformation
- Composition of gas detected
- Mobilisation of other substancesMMV
- Regulatory conflict/ overlap

Suggested stages for Regulators

- Identify resources within basin
 - Map distribution
 - Assess quality
- Establish resource priority
- Assess storage project site characterisation, MMV, mitigation plans etc
- Review injection plans achievable? Lead to resource conflict?
- Review abandonment plans including longer term MMV and liability transfer

Conclusions

- Interaction can be positive or negative
- Interaction depends on geology, existing resources, economic potential, regulatory environment
- 2 activities may take place at same site, dependent on pore space overlap, pressure connectivity
- Interaction may be contemporaneous/ sequential
- Delays in establishing storage regulations could lead to future detrimental resource interaction
- Regulations need to be clear and account for potential resource prioritisation and interaction
- Assessment of potential resource uses in a region and possible interactions - enable effective prioritisation and efficient allocation of resources. As well as potential effects on storage injectivity and capacity

IEAGHG Meetings 2012

- Joint Storage Networks Meeting, June 2012, Santa Fe, LANL
 - Reviewed achievements to date
 - Future direction
- Environmental Assessment Network, July 2012, Bozeman, University of Montana
 - Controlled release projects first time together
 - Marine monitoring
 - ZERT facility

IEAGHG Network Meetings and Conferences 2013+

- Risk Management Network and Modelling Network
 - 10-12 Jun 2013, Trondheim. Hosts Statoil
- Monitoring Network and Environmental Research Network
 - 26-30 Aug 2013, Canberra. Hosts CO2CRC
- Post Combustion Capture Conference 2
 - Bergen, Norway September 17th -20th 2013. Hosts Gassnova
- Oxyfuel Combustion Conference 3
 - Leon, Spain 9th -13th September 2013. Hosts CUIDEN
- High Temperature Solid Looping Cycles Network
 - 2-3 Sep 2013, Cambridge. Hosts Cambridge University
- GHGT-12, Austin, Texas, 5-9 Oct 2014
 - Call for abstracts ~July 2013, deadline ~January 2014

IEA GHG Collaborations etc

- GCCSI
- CSLF
- EU ZEP
- IEA, and IEA Regulators Network
- CO2GeoNet
- UNFCCC CCS CDM transboundary deferred to 2016
- London Convention revised CO2 Specific Guidelines to allow transboundary subsurface
- ISO work started. 5 Working Groups

Thank you

Any questions?

