"It is of no use to monitor a reservoir without

knowing the sensitivity of the monitoring

equipment."

CO₂FieldLab

Maria Barrio, Etor Querendez, Michael Jordan CSLF CO₂, Monitoring Interactive Workshop 18 April 2013, Rome

Partners

France

Norway

Schlumberger

Acknowledgments for financial support:

- CLIMIT via Gassnova SF (NO)
- DGCIS, Direction générale de la compétitivité, de l'industrie et des services (FR)

SINTEF largest independent research organisation in Scandinavia

- Leading expertise in the natural sciences and technology, environment, health and social science
- 2100 employees from 68 countries
- Annual sales of NOK 2,8 billion customers in 61 countries
- A non-commercial research foundation with subsidiaries

Main interests in an Operator's perspective

Monitoring technology out of traditional O&G expertise

Close technology gaps through research on monitoring

Communication strategy towards local communities

and general public

Contribution to the general debate on CO2 storage safety

Objectives

- CO₂ injection in permeable reservoir (shallow and deep)
- Sensitivity of monitoring systems
- Upscale monitoring systems and requirements
- Migration models
- Monitoring protocol & certification scheme
- Inform the public

Location

Drammensfjord 50km SW of Oslo

Overview of time line

- Phase 0 Site selection
- Phase 1 (Sept. '09 Jan.'11)
 - Site characterisation: geological surveys performed
 - June '10: Drilled and logged 300 m appraisal well
 - Updated models based on logged data
- → Phase 2a (May '11 Dec '13)
 - → Sept. '11: Shallow injection performed (20m)
 - VSP survey at 200 m & continuous sampling
 - → Permeability test at 65 m (Nov.'12)
 - Consolidation of results & publication

Shallow injection experiment

- Calibration of tool measurements:
 - Detect and quantify
- Sensitivity of monitoring tools deployed
- Impact of the vadose zone on required measurements
- Rehearse and coordinate surface monitoring methods before deep injection

Monitoring methods deployed

Tool	Depth	Deployment	Mode
GAS			
Gas monitor station	c. 1 m	Fixed	Continuous
Flux station	Surface	Fixed	Continuous
Eddy covariance	Surface	Fixed	Continuous
Mobile laser	Surface	Mobile	Intermittent
Flux	Surface	Point (not fixed)	Intermittent
Radon/ CO ₂ monitoring probes	0.8 m	Fixed	Continuous
CO ₂ , O ₂ and CH ₄ monitoring (soil gas)	1 m	Fixed/ mobile	Intermittent
Portable GC	Surface	Fixed	Intermittent
WATER			
*Sampling for chemistry and isotopes (using peristaltic pumps)	5,10 & 15m	Fixed	Intermittent
*Idronaut probe (piezometer)	2m	Fixed	Intermittent
Water sampling with West-bay completion	Several depth levels 1-20 m	Fixed	Continuous
Borehole GEOPHYSICS			
4D cross-borehole resistivity tomography ALERT	0-20 m	fixed	Automatic repeat
1D resistivity observatory IMAGEAU	0-20 m	fixed	Automatic repeat
Time-lapse logging (resistivity, gamma-ray, sonic)	0-20 m	fixed	Intermittent
2D Crosswell radar (GPR) tomography	0 - 13 m	fixed	Intermittent
Pressure, conductivity monitoring in West-bay well	0 - 20 m	Fixed	Continuous

Positioning of

Facts

- > The surface detection of CO₂ not right above injection
- CO₂ leakage along wellhead
- Breakthrough to the North at outer margin of test area.

Soil gas and water sampling

Soil Gas CO₂ concentration (%) at 50cm depth

Learning from shallow injection

- 1. Impact of geology at short length scale
- 2. Complex impact of CO2 on conductivity and resistivity
 - Saline/fresh water mixing
 - 2. Dissolution / gas proportion and rates
 - 3. Reaction rates
- 3. Methodology of monitoring techniques
 - 1. Acquired data vs interpreted data
 - 2. Measuring principle for the various techniques
 - 3. Sufficiency of baseline data
 - 4. Impact of external variations (rainfall, tides)

Impact of heterogeneities

Crosswell GPR Time-lapse monitoring (BRGM)

- first a 20% increase of velocity: detection of gas phase
- After 3 days of injection, abrupt return to a constant value,
- ~ -5% than initial conditions: detection of electrical conductivity increase.

Impact of natural temporal variations

Complex setting

- Several phenomena co-exist and interact
 - convection currents causing mixing of water from layers with different salinity
 - dissolution of CO₂ into water inducing new rock-water interactions
 - migration of the CO₂ gas phase.

Conductivity
Salinity
Dissolution

Change in conduction due to change in water saturation

The resistivity of ground water wiff² Field Lab always decrease upon exposure to CO₂ Why? Chemistry:

Process	Reaction	Effect on pH	Effect conductivity	Rate
Dissolution of CO ₂ in water	CO ₂ ^g -> CO ₂ ^{aq}	None	None	Slow
Formation of carbonic acid	$CO_2^{aq} + H_2O \rightarrow H_2CO_3$	None	None	Instant
Dissociation of carbonic acid	H ₂ CO ₃ -> H ⁺ + HCO ₃ ⁻	Decreases	Increases	Instant
Dissociation of carbonic acid	HCO ₃ > H+ + CO ₃	Decreases	Increases negligible at pH < 9	Instant
Dissolution of carbonates*	MeCO ₃ + H ⁺ -> Me ⁺⁺ + HCO ₃ ⁻	Compensates some of the decrease, buffering	Increases	Slow

Soil Gas isotopic monitoring

CO₂ concentration : No significant variations observed

The carbon isotope compositions (BRGM) Both the CO₂ leak and the return of the system back to its initial state.

 δ^{13} C is explained by a binary mixing between the surrounding atmospheric CO₂ and the injected CO₂.

Daily averages and standard deviations reported.

Shallow and Deep Geomodels

- Used for data integration and interpretation
- Used for modelling

- Surface GPR
- Cross-well GPR
- Shallow gas CO2 concentration
- > ALERT resistivity cube
- Resistivity log

Key results

- All deployed instruments measured changes over the course of the CO₂ injection
 - Some inside noise level
 - Some can be misleading (no CO₂ concentration variations even though isotopic signature of injected CO₂ visible)
- All methods agreed about the CO₂ plume migrating outside of the monitoring region
- Indirect measurements above 5m depth might not reliable due to environmental noise
- ▶ Direct geochemical measurements (pH, Alkalinity, Isotopic analysis...) have the highest sensitivity to CO₂ presence

WHAT NEXT?

New injection at 65 meter deep

Feasibility of monitoring strategy

 Develop and test comprehensive workflow for determining optimum, site specific monitoring strategy of CO2 injection/storage

"How can we detect and quantify the CO2 at any given site?"

- Scalable
- Quantification of CO2

Feasibility study for monitoring strategy

Derive different geomodels for the possible injection scenarios

Geophysical modelling of various data sets at several time steps during the injection

- Multiple monitoring scenarios
- Take into account realistic conditions: E.g., attenuation, anisotropy, topography,...

Determine optimum methods, acquisition, and resolution for monitoring

- 4D FWI (2D / 3D), CSEM, Resistivity, Gravity
- Joint/constrained inversion

CO, Field Lab

Field scale test of diffusion induced convection

- Test predictions for onset time at a scale larger than laboratory
- Determine the onset time and dissolution rate CO2 in a geological environment

Field scale test of diffusion induced convection

