

Trygve Riis

Technical Group Chairman

Reviewed and Endorsed Five New Projects

- CO₂ Capture Project, Phase 4
- CO2CRC Otway Project Stage 2
- Oxy-Combustion of Heavy Liquid Fuels Project
- Carbon Capture and Utilization Project / CO₂ Network Project
- Dry Solid Sorbent CO₂ Capture Project

CO₂ Capture Project, Phase 4

- Nominated by United Kingdom, Canada, and United States
- Overall goal of CCP is to advance technologies which will support deployment of large-scale CCS.
- Phase 4 activities to include further research into CO₂ capture scenarios identified in previous phases, plus development of new scenario for CO₂ separation from natural gas production.

CO₂ Capture Project, Phase 4

- Proposed activities includes sub-programs for:
 - CO₂ Capture
 - Storage, monitoring and verification
 - Policy and Incentives
 - Communications
- CCP4 began in February 2015, will run through end of 2018
- CCP4 members are BP, Chevron, Petrobras, and Suncor

The Technical Group recommends that the Policy Group provide CSLF recognition to the CO₂ Capture Project, Phase 4

CO2CRC Otway Project Stage 2

- Nominated by Australia and United States
- Located in southwestern Victoria, Australia
- Overall goal is to advance knowledge for CO₂ storage in saline formations.
 - Improved storage model robustness
 - Improved means of predicting subsurface CO₂ behavior and plume stabilization

CO2CRC Otway Project Stage 2

- Project to run through 2020.
- Includes site characterization and field tests
- Expected outcome is an improvement in methodologies for the characterization and monitoring of CO₂ stored in deep saline formations.

The Technical Group recommends that the Policy Group provide CSLF recognition to the CO2CRC Otway Project Stage 2

Oxy-Combustion of Heavy Liquid Fuels Project

- Nominated by Saudi Arabia and United States
- Located in Dhahran, Saudi Arabia
- Joint project between Saudi Aramco and Alstom
- Scale is 30-60 MW
- Overall goal is to investigate the performance of oxy-fuel combustion technology when firing difficult-to-burn liquid fuels such as asphalt

Oxy-Combustion of Heavy Liquid Fuels Project

- Anticipated outcomes include demonstration of feasibility for oxy-combustion with heavy liquid fuels and identification of scale-up / bottleneck issues that need to be addressed
- Project will help push technology forward toward commercialization of oxy-combustion of low value fuels

The Technical Group recommends that the Policy Group provide CSLF recognition to the Oxy-Combustion of Heavy Liquid Fuels Project

Carbon Capture and Utilization Project / CO₂ Network Project

- Nominated by Saudi Arabia and South Africa
- Located in Jubail Industrial City, Saudi Arabia
- Sponsored by Saudi Arabia Basic Industries Corp.
- Overall goal is to capture and utilize CO₂ from ethylene glycol production facilities
- Large-scale project, 1,500 tonnes CO₂ per day

Carbon Capture and Utilization Project / CO₂ Network Project

- Project to include construction of 25-km pipeline network
- CO₂ to be utilized a feedstock for production of methanol, urea, oxy-alcohols, and polycarbonates
- Food-grade liquid CO₂ also a product
- CO₂ network can be further expanded as opportunities present themselves

The Technical Group recommends that the Policy Group provide CSLF recognition to the Carbon Capture and Utilization Project / CO₂ Network Project

Dry Solid Sorbent CO₂ Capture Project of 10 MWe Scale

- Nominated by Korea, UK and Norway
- Located at Hadong Power Plant in southern Korea
- Sponsored by KEPCO Research Institute, KIER, and KOSPO
- Overall goal is to demonstrate solid sorbent capture at pilot scale for long duration

Dry Solid Sorbent CO₂ Capture Project of 10 MWe Scale

- Target 40 Dollars/ton capture cost
- 200 ton CO₂/day capture rate
- 95% CO₂ purity
- Sorbent is K₂CO₃ based
- Project will run through September 2017

The Technical Group recommends that the Policy Group provide CSLF recognition to the Dry Solid Sorbent CO₂ Capture Project

Deliverables for

Ministerial Conference

- TRM Interim Report
- Report on Development of 2nd and 3rd Generation CO₂ Capture Technologies
- Key Messages from the CSLF "Lessons Learned from Large-Scale CCS" Workshop
- Messages and Recommendations from CSLF Technical Group

TRM Interim Report

- 2013 CSLF Technology Roadmap (TRM) was launched at 5th CSLF Ministerial Meeting in November 2013.
- Identified ten key technology needs areas.
- Two years later, a TRM Interim Report was completed to gauge progress toward implementation in each of these areas.

TRM Interim Report

Conclusions:

- The 2013 TRM established the year 2020 as an achievable timeframe for demonstration of the 1st generation of CCS technologies and 2030 for demonstration of 2nd generation technologies.
- Two years later, barriers are still in place that inhibit the accomplishment of these goals.

TRM Interim Report

Conclusions:

 Except for a very few niche industrial sector applications, for the current generation of CCS technologies, none of the ten technology needs areas perceived as progress being 'fast moving'.

TRM Interim Report

Conclusions:

 'Slow to moderate' progress toward implementation was perceived, in general, mainly because of existing policy and economic barriers.

TRM Interim Report

Conclusions:

- Technical readiness of CCS technologies were perceived, in general, as ready for large-scale commercial deployment.
- Barriers are present that are inhibiting progress toward widespread implementation.

TRM Interim Report

Conclusions:

 Next several years are a critical time. Regulatory policies and approaches toward financing must also become mature. Barriers must be lowered.

CO₂ Utilization, EOR

- Norway re-elected as Technical Group Chair
- Australia, Canada, South Africa re-elected as Technical Group Vice Chairs
- Sub-Seabed CO₂ Storage Task Force issued final report
- New Technical Group activities initiated in the areas of:
 - Offshore CO₂ EOR
 - Bioenergy with CCS
 - Improved Pore Space Utilization

- Meeting was rich in content, including:
 - Overview of CCS activities in Saudi Arabia
 - Update on CO₂ GeoNet and CGS Europe Projects
 - Overview of Alstom's Oxyfuel development program
 - Update on IEAGHG activities
 - Update on International CO₂ Capture Test Centre Network

Comments welcome!