

SABIC CO₂ INITIATIVES

DR. ATIEH ABU RAQABAH, GENERAL MANAGER, SABIC CORPORATE SUSTAINABILITY

CARBON SEQUESTRATION LEADERSHIP FORUM (CSLF) November 1-5, 2015, Riyadh, Kingdom of Saudi Arabia

CHEMISTRY THAT MATTERS[™]

SABIC IS ROOTED INTO SUSTAINABILITY

Jubail City 1976

Evolution of petrochemical industries in KSA

Jubail City now

- Millions of tons valuable materials
- Billions of tons avoided CO₂ emissions
- Over 35,000 direct jobs
- Over 280,000 indirect jobs
- Thousands of new related industries
- Billions of dollars revenue and dividends
- Over \$160 Billion total state of the art assets

SUSTAINABILITY IS A KEY FOUNDATION OF SABIC 2025 STRATEGY

Sustainability is achieving long term economic success with environmental protection & social responsibility

- Minimize own environmental impact
- Provide solutions that help enable our customers to meet their sustainability goals
- Invest in local economies and communities

SABIC'S OPERATIONAL SUSTAINABILITY PERFORMANCE AND 2025 ENERGY INTENSITY TARGET

OUR APPROACH TOWARDS CO₂ EMISSION

CO_2 REACTION PATHWAYS FOR CHEMICAL INDUSTRY

$\rm CO_2$ UTILIZATION, AN OPPORTUNITY FOR $\rm CO_2$ FROM EO

Ethylene oxide reaction:

Unwanted side reactions:

$$C_2H_4 + \frac{1}{2}O_2 \xrightarrow{Ag \ catalyst+temperature} C_2H_4O$$

$$\boldsymbol{C_2H_4O} \rightarrow \boldsymbol{CH_3CHO} + \frac{5}{2}\boldsymbol{O_2} \rightarrow 2\boldsymbol{CO_2} + 2\boldsymbol{H_2O}$$

$$C_2H_4 + \frac{3}{2}O_2 \xrightarrow{Ag \ catalyst+temperature} 2CO_2 + 2H_2O_2$$

Converting waste CO₂ into valuable products:

$$CO_2 + CH_4 \rightarrow 2H_2 + 2CO \rightarrow CH_3OH$$

EG plants are a main contributor to CO₂ emissions in SABIC.

Large amounts can be utilized within SABIC to produce valuable products $CO_2+2NH_3\rightarrow NH_2CO_2NH_4\rightarrow (NH_2)_2CO+H_2O$

SABIC CO₂ PURIFICATIONS REQUIRMENTS

- CO₂ from EO plants contains traces of contaminants (chlorides, hydrocarbons) that have to be removed for utilization
- No complete commercial scheme was available to obtain the desired CO₂ purification
- A process scheme was developed to tackle this challenge. SABIC T&I developed and built a pilot plant to test the assumption. The results were encouraging and assumption has been validated. 2 patents were granted
- Based on this, SABIC invested in building a commercial scale plant at UNITED affiliate

CO₂ PURIFICATION PROCESS: GENERIC PROCESS FLOW DIAGRAM

LARGEST CO_2 CAPTURE AND PURIFICATION PLANT; CAPACITY OF 1500 TON CO_2/DAY

Before			CO ₂ capture plant			After			
S. No		Unit	Values		Sr.No.		Unit	Gaseous	Li
l.	Total organic chloride (max)	PPMV	3			The Operation of the life	DDD///Max)	< 50	
l.,	Methane	PPMV	500		1.	Total Organic Chloride	PPBV (Max)	< 50	
	Ethylene	PPMV	2000		2.	Oxygen (O ₂)	PPMV (Max)	< 10	
	Ethane	PPMV	NII		3.	Ethylene (C ₂ H ₄)	PPMV (Max)	< 5	
			1112		4.	Methane (CH ₄)	PPMV (Max)	< 5	
	Ethylene oxide	PPMV	16		5.	Nitrogen (N ₂)	PPMV (Max)	<10	
	Carbon Di Oxide (CO ₂)	%	95		6.	Carbon Dioxide (CO ₂)	% (Vol)	99.99	
	water	%	4.75	4	7.	Water (H ₂ O)	PPMV	< 10	
		1	Process	s parameters					
UCESS F	arameters				8	Temperature (Min)	deg C	ambient	
	Temperature	Deg.C	60		9	Temperature (Max)	deg C	50	
	Pressure	Bar a	1.0		10	Pressure	bar A	40	
•					- Ale	PART INTER	2 F		
1	· · · · · · · · · · · · · · · · · · ·			Drving	ing.				
	and the second second	1 And I all	E Salati		21.	COMPACT LAR		the state	
				Compression	X				

Drying Compression Combustion of hydrocarbons Contaminants removal Distribution to integrated CO₂ network or liquid storage

UNITED, Jubail, Saudi Arabia

CONVERTING CO_2 WASTE INTO VALUABLE PRODUCTS, VIA AN INTEGRATED NETWORK FOR CO_2 DISTRIBUTION

NET CO₂ OFFSET POTENTIAL

ىيتابك ەنماھە

AVOIDED EMISSIONS: BENEFITS PROVIDED BY THE CHEMICAL INDUSTRY

HDPE BIMODAL PIPE FOR WATER TRANSPORTATION SOLUTION

Ductile Iron HDPE Bimodal 71 % Avoided Emissions ✓ Lighter

- ✓ Stronger
- ✓ More erosion resistance
- ✓ Energy reduction

8.5 kg CO₂ avoided/kg resin

SUSTAINABLE SOLUTIONS ENABLE AVOIDED EMISSIONS: LIGHT WEIGHT

SABIC innovations are reducing weight in nearly every interior area of the aircraft

1 KG REDUCTION PER FLIGHT = 1700 tons of fuel = 5400 tons of CO2

-12% versus PPMA/PVC

-40% versus Metal

-25% versus solid

SABIC'S COMMITMENT FOR INNOVATION AND SUSTAINABILITY

SABIC has 19 Innovation and Technology Centers across the globe

SHARING OUR JOURNEY WITH THE WORLD

Acknowledgment

UNITED TEAM:

- Engineer Abdulaziz Al-Omari
- Engineer Ahmad Hasanain

R&D Team

- Dr. Abdulaziz Al-Jodai
- Dr. Ijaz Ahmad

Sustainability Team

- Pieter Smeets
- Abdullah Maghrabi
- Hans Vandervelpen
- Ananda Sekar

Thank You

APPROXIMATE UTILITIES CONSUMPTION & EFFLUENT GENERATION FOR STANDARD CO $_{\rm 2}$ PURIFICATION PROCESS UNIT

Utility Consumption	Unit	Value							
Energy	KW	7400							
Cooling Water	Cu.m/hr	1650							
Steam Consumption	Kg/hr	400							
Instrument Air	Nm3/hr	250							
Oxygen (O2)	Nm3/hr	220							
Effluent Generation									
Process Condensate	Kg/hr	6200							
Emission to atmosphere	Nm3/hr	1027							

COULD THIS BE PASSING ON THE BURDENS DOWNSTREAM?

