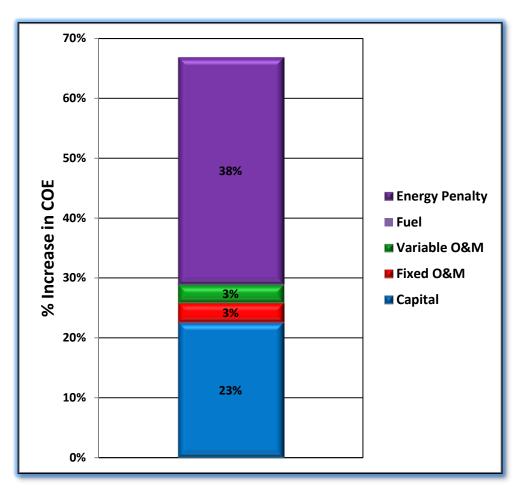


GLOBAL CCS INSTITUTE TECHNICAL FOCUS 2015 NEIL WILDGUST PRINCIPAL MANAGER – GEOLOGICAL STORAGE

CSLF Technical Group Meeting June 2015

Actual and expected operation dates for projects in operation, construction and advanced planning

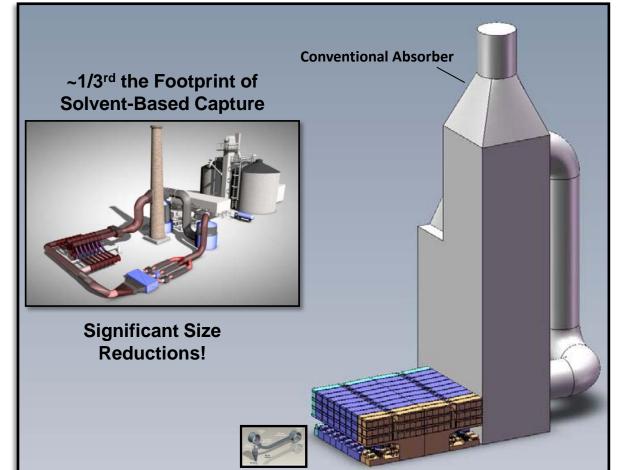

2014-2015 is a watershed period for CCS – it is a reality in the power sector and additional project approvals are anticipated

CO2 capture – focus on cost

- First generation projects will deliver important lessons.
- Continued R&D activities on materials, processes and equipment – will help drive down costs.
- Collaboration crucial to achieve cost and performance goals.
- Next-generation technologies ready for the 2020-2025 timeframe.

Institute's Upcoming Capture Focus

- Cost reduction
 - 2nd Generation
 Technologies
 - Transformational
 Technologies
- Water Use


- Current wave of projects moved into operation and construction
- What's next?
- Examine R&D pilot projects globally
 - Development timelines
 - Energy impacts
 - Capital cost impacts
- Included as part of 2015 Global Status Report

Current DOE 2nd Generation Pilot Development

Performer	Project Focus	Benefits	Scale	FY 14		FY 16	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30			
			S	Solven	ts															-			
Neumann	Nozzle-Based Solvent	Modular; Solvent	0.5 MWe																				
, , , , , , , , , , , , , , , , , , ,	Delivery	Agnostic	0.5 101000																				
Linde	Advanced Amine/ Heat Integration	Single Process Train	1 MWe													\Rightarrow						Small	Pilot
University of Kentucky	2-Stage Regeneration	High Pressure Regeneration	0.7 MWe								\Rightarrow					\Rightarrow					1	Large	Pilot
Southern Company	Heat Integration/ Exchange	Thermal Management	25 MWe																		I	Demo	
General Electric	Silicone Solvent	Enhanced Energetics	1 MWe							Î					Î								
ION Engineering	Non-Aqueous Solvent/ Amine Mixture	Enhanced Energetics	0.7 MWe									1					Î						
			S	orber	nts																		
ADA-ES	Amine-Based Sorbent	Process Design	1 MWe												\Rightarrow								
TDA	Alkalized Alumina Sorbent	Process Cycle	1 MWe									Î											
SRI	Carbon-Based Sorbent	Attrition Resistance	1 MWe																				
			Me	embra	ines																		
MTR	Spiral-wound Membrane	Process Design	1 MWe												Î								
GTI	Solvent Contactor	Process Intensification	1 MWe														\uparrow						
			Оху	ygen-F	ired			_											_				
Aerojet Rocketdyne	Oxy-PFBC	Latent Heat Recovery	1 MWe									Î											
Alstom	Limestone Chemical Looping Combustion	Inexpensive O ₂ Carrier	1 MWe													\Rightarrow							

Transformational Technologies

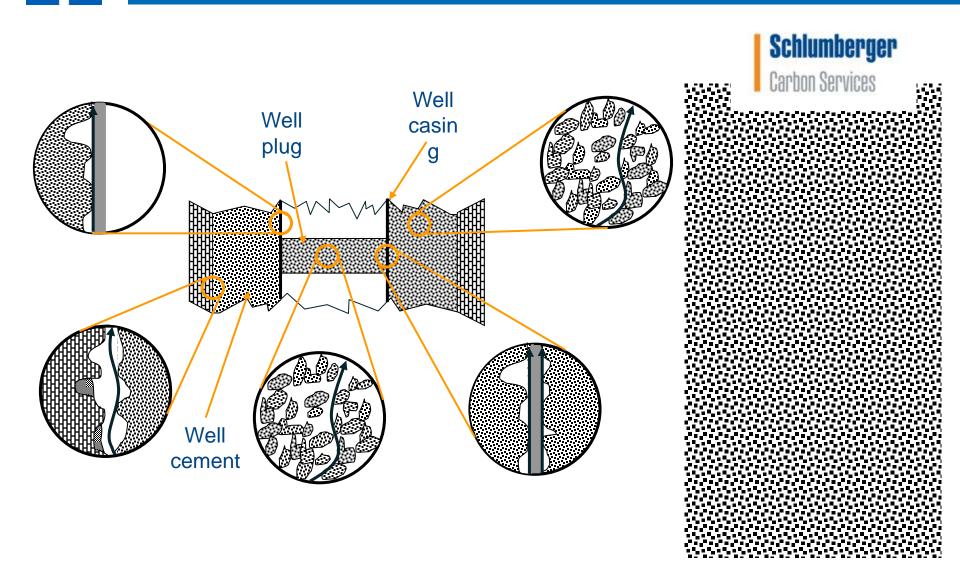
- Targets
- Approaches
 - Materials
 - Equipment
 - Processes
- Summaries of selected development efforts
- Fact sheets or topical reports

- Literature estimates show 60 90% increase in water consumption
 - -5-10 years old
 - Based on simple design
- Refresh water use estimates
 - Updated design
 - Process integration
- Base on estimates from ROAD and other projects
- Topical Report

- EOR providing support to current wave of CCS projects.
- Global deployment will require significant geological storage.
- 2°C scenario requires over 2Gt annual storage by 2030, over 7Gt by 2050.
- Greenfields sites can take up to 10 years to assess to FID standard.
- Currently, industry has no incentive to undertake storage exploration.

2014 Status Report – Risk Focus

- Storage section prepared with DNV
- Described how existing technology allows secure geological storage
- Extensive experience from dedicated projects and industrial analogues
- Storage regulations need to be proportionate to risk



- 2015 Global Status report
 - Global review of storage resource assessments
 - Emphasis on more refined (practical/matched) resources
 - Adequate resources exist to allow commercial deployment
- Long term goal and WBCSD initiative
- Further regional and global assessments worthwhile.....but this is not a barrier to deployment

REGIONAL STORAGE FOCUS

- Asia-Pacific
 - CCOP CCS mapping program
 - CSLF offshore task force
 - Global storage readiness report
- Europe-Africa-Middle East
 - ZEP storage and transport
 - Brine extraction/'EWR'
- Americas
 - Knowledge networks
 - ISO support
 - CO₂-EOR and storage

Wellbore Integrity Network

GLOBALCCSINSTITUTE.COM