The Outlook for Improved Carbon Capture Technology

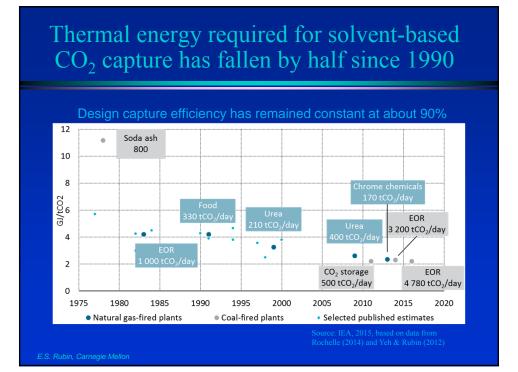
Edward S. Rubin

Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

Presentation to the Carbon Sequestration Leadership Forum Regina, Saskatchewan, Canada June 16, 2015

- Defining "improved technology"
- A look at some past trends
- The potential for future improvements
- What it takes to achieve them

Two Principal Measures of Improved Capture Technology


Improvements in performance

- Higher CO₂ capture efficiency
- Lower energy penalty
- Increased reliability
- Reduced life cycle impacts

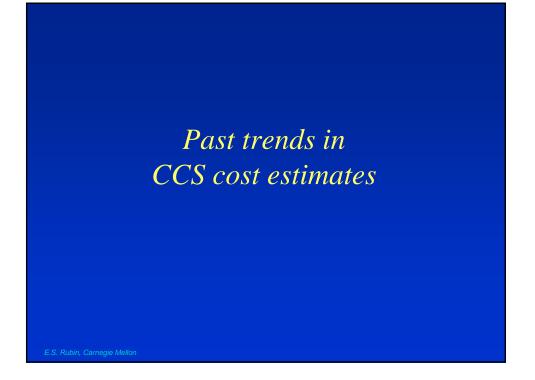
Reductions in cost

- Capital cost
- Cost of electricity
- Cost of CO₂ avoided
- Cost of CO₂ captured

E.S. Rubin, Carnegie Mellor

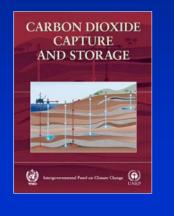
Most improvement goals focus on cost reductions for CO₂ capture

The specific form and magnitude of cost goals may change over time; here are recent goals of the U.S. Department of Energy


Table 3-1. Market-Based R&D Goals for Advanced Coal Power Systems							
	Goals (for nth-of-a-kind plants)			Performance Combinations that Meet Goals			
R&D Portfolio Pathway	Cost of Captured CO ₂ , \$710000 ¹	(OE Reduction	2	Efficiency (HHV)	Capital/O&M Reduction ³	
2 [™] -Geneneration R&D Goals for Commercial Deployment of Coal Power in 2025							
In 2025, EOR revenues will be required for 2 rd -Generation coal power to compete with natural gas combined cycle and nuclear in absence of a regulation-based cost for carbon emissions.							
Greenfield Advanced Ultra-Supercritical PC with CCS	40		20%		37%	13%	
Greenfield Oxy-Combustion PC with CCS	40		20%		35%	18%	
Greenfield Advanced IGCC with CCS	≤40		≥20%		40%	18%	
Retrofit of Existing PC with CCS	45	n/a					
Transformational R&D Goals for Commercial Deployment of Coal Power in 2035							
Beyond 2035, Transformational R&D and a regulation-based cost for carbon emissions will enable wat power to compete with natural gas combined cycle and nuclear without EOR revenues.							
New Plant with CCS—Higher Efficiency Path	<10 ⁵		40%		56%	0%	
New Plant with CCS—Lower Cost Path	<105		40%		43%	27%	
Retrofit of Existing PC with CCS	30		≥40%		n/a		
ES Pubin Comorio Mollon					Source: USDOE/NE Technology Program		

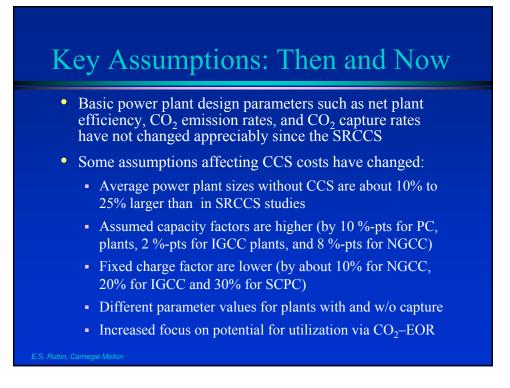
Ten Ways to Reduce CCS Cost

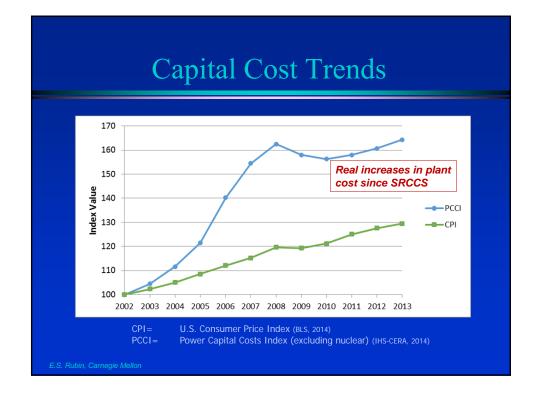
(inspired by D. Letterman)


- 10. Assume high power plant efficiency
- 9. Assume high-quality fuel properties
- 8. Assume low fuel price
- 7. Assume EOR credits for CO_2 storage
- 6. Omit certain capital costs
- 5. Report $\frac{1}{2}$ based on short tons
- 4. Assume long plant lifetime
- 3. Assume low interest rate (discount rate)
- 2. Assume high plant utilization (capacity factor)
- 1. Assume all of the above !

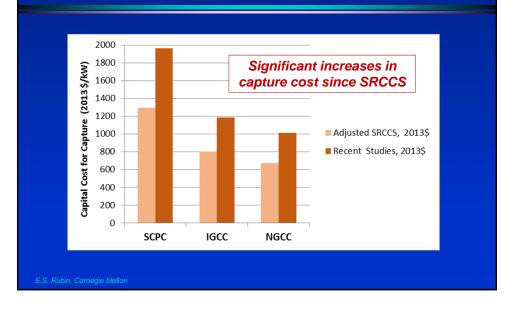
... and we have not yet considered the CCS technology!

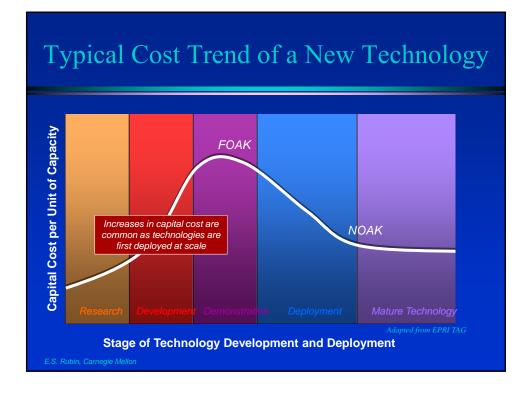
- Commissioned by IPCC in 2003; completed in December 2005
- First comprehensive look at CCS as a climate change mitigation option (9 chapters; ~100 authors)
- Included a detailed review of cost estimates for CO₂ capture, transport and storage options

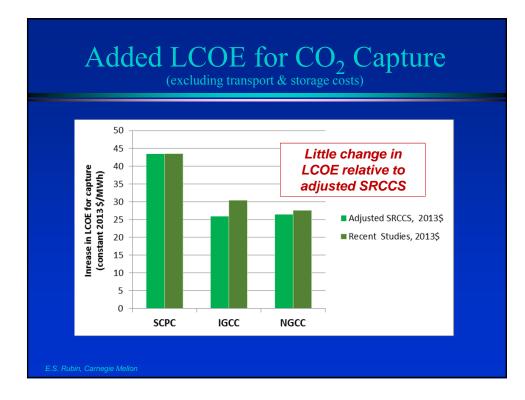



2015 Cost Update

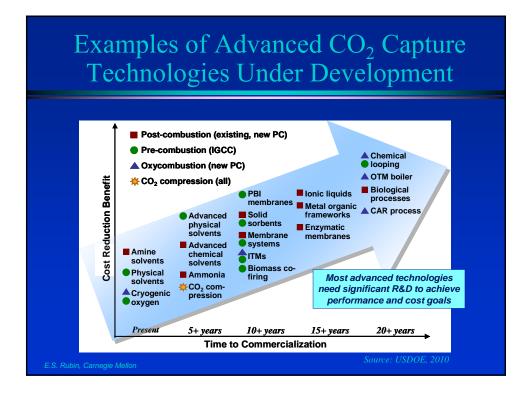
with J. Davison and H. Herzog, IJGGC, in press)

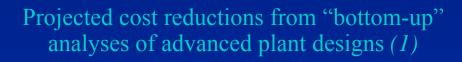

- Compiled data from recent CCS cost studies in the U.S. and Europe for new power plants with:
 - Post-combustion CO₂ capture (SCPC and NGCC)
 - Pre-combustion CO₂ capture (IGCC)
 - Oxy-combustion CO₂ capture (SCPC)
- Adjusted all costs to constant 2013 US dollars
- Adjusted SRCCS costs from 2002 to 2013 USD using:
 - Capital /O&M cost escalation factors +
 - Fuel cost escalation factors (for COE)
- Compared current cost estimates to SRCCS values

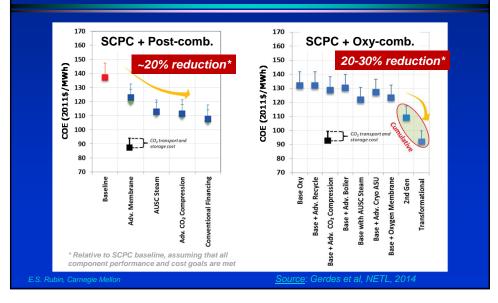

E.S. Rubin, Carnegie Mellon

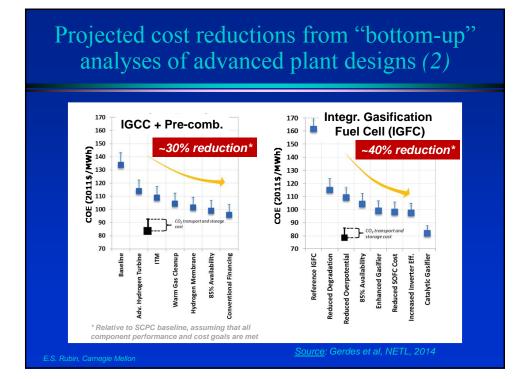


Added Capital Cost for CO₂ Capture (over and above the reference plant cost without capture)

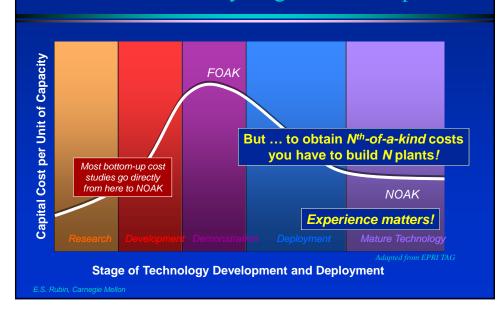



Other Conclusions from the Study


- For new SCPC plants oxy-combustion shows potential to be cost competitive with post-combustion capture
- Based on current cost estimates for the four CCS pathways analyzed, there are no obvious winners or losers
- For all options, CCS cost can be reduced significantly if CO₂ can be sold for enhanced oil recovery in conjunction with geological storage over the life of the project


E.S. Rubin, Carnegie Mellon

The potential for future cost reductions



Most New Capture Concepts Are Still Far from Commercial Technology **Readiness Levels Post-Combustion Capture** Mineralization & Bio TRL 9 Membrane TRL 8 Adsorption TRL 7 Absorption _ 1 2 3 4 5 6 7 8 9 **Technology Readiness Levels** Source: EPRI, 2009

Technology Scale-Up Takes Time and Money				
TRL	Scale	Cost to achieve	Time to achieve	
6 Process Development Unit	Up to ~5% full scale	\$ millions to \$10s of millions	24-48 months	
7 Pilot Plant	At least 5% full scale	\$10s of millions to \$100s of missions	24-60 months	
8 Commercial Pilot Plant	At least 25% full scale	\$100s of millions	4-7 years	
9 1 st Commercial Deployment	Full scale	\$100s of millions to \$ billions	4-7 years	
Rubin, Carnegie Mellon			Source: EPRI, 2014	

Most studies seek NOAK cost estimates while still at at early stages of development

An Alternative Approach to Estimating NOAK Costs

- Use traditional "bottom-up" methods to estimate FOAK cost for an advanced technology based on its <u>current</u> state of development*
- Then use a "top-down" model based on learning curves to estimate future (NOAK) costs as a function of installed capacity (and other factors, if applicable)
- From this, estimate level of deployment needed to achieve an NOAK cost goal (e.g., an X% lower LCOE)

*as specified in current AACE/EPRI/NETL guidelines

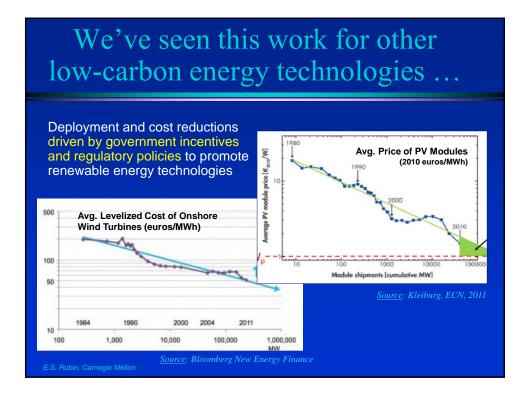
E.S. Rubin, Carnegie Mello

Projected Cost Reductions from a "Top-Down" Analysis

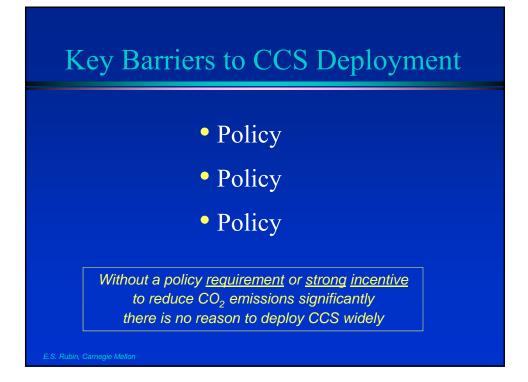
Learning curves applied to capacity projections from energy-economic modeling, 2001–2050*

Power Plant System	Reduction in Cost of Electricity* (\$/MWh)	Reduction in Mitigation Cost* (\$/tCO ₂ avoided)
SCPC -CCS	14% – 44%	19% – 62%
NGCC –CCS	12% – 40%	13% – 60%
IGCC –CCS	22% – 52%	19% – 58%

* Ranges based on low and high global carbon price scenarios.


Source: van der Brock et al, 2010

E.S. Rubin, Carnegie Mellor


What does it take to achieve these cost reductions ?

Ingredients of Technology Innovations that Reduce Costs

- Sustained R&D
- Markets for the technology
- Learning from experience

Policy options that can foster CCS and technology innovation

	Regulatory Policy Options		
Direct Gov't Funding of Knowledge Generation	Direct or Indirect Support for Commercialization and Production	Knowledge Diffusion and Learning	Economy-wide, Sector-wide, or Technology- Specific Regs and Standards
R&D contracts with private firms (fully funded or cost- shared) Intramural R&D in government laboratories R&D contracts with consortia or collaborations	 R&D tax credits Patents Production subsidies or tax credit for firms bringing new technologies to market Tax credits, rebates, or payments for purchasers/users of new technologies Gov't procurement of new or advanced technologies Demonstration projects Loan guarantees Monetary prizes 	 Education and training Codification and diffusion of technical knowledge (e.g., via interpretation and validation of R&D results; screening; support for databases) Technical standards Technology/Industry extension program Publicity, persuasion and consumer information 	Emissions tax Cap-and-trade program Performance standards (for emission rates, efficiency, or other measures of performance) Fuels tax Portfolio standards

What is the Outlook for Improved Capture Technology?

- Sustained R&D is essential to achieve lower costs; but ...
- Learning from experience with full-scale projects is especially critical.
- Strong policy drivers that <u>create markets</u> for CCS are needed to spur innovations that significantly reduce the cost of capture
- WATCH THIS SPACE FOR UPDATES ON PROGRESS

E.S. Rubin, Carnegie Mello

