

CO₂ Capture Project (CCP) – Phase 3 Results

2015 CSLF Mid-Year Meeting – 16th June 2015

Presented by: Mark Crombie – CCP Program Manager

BP Group Technology, UK

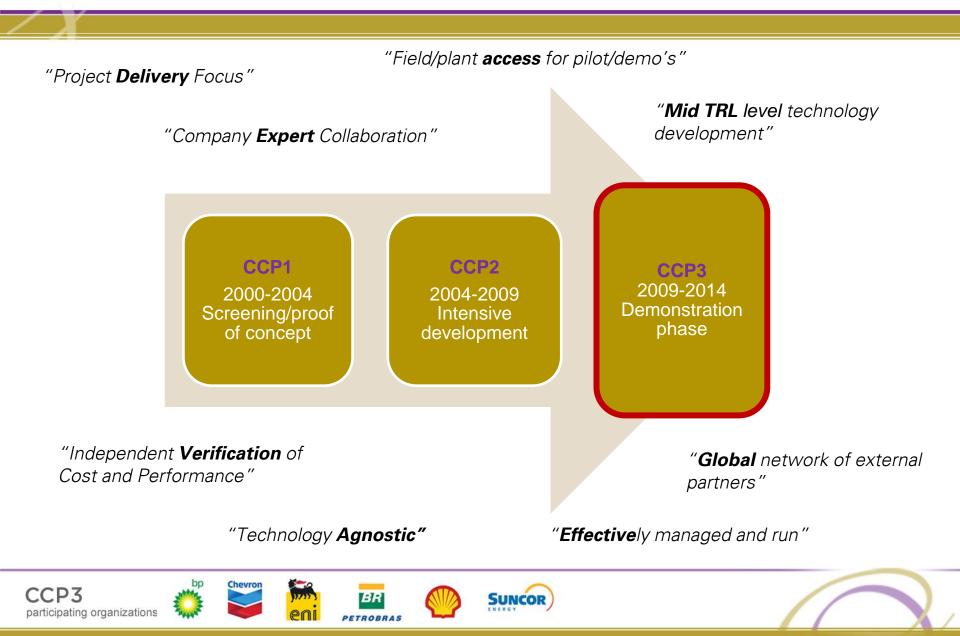
- CCP Overview
- CCP3 Capture Program
- CCP3 Storage Program
- CCP3 Comms/P&I Programs
- CCP4
- CCP Conclusions

This presentation has been prepared for informational purposes only. All statements of opinion and/or belief contained in this document and all views expressed and all projections, forecasts or statements relating to expectations regarding future events represent the CCP's own assessment and interpretation of information available to it as at the date of this document.

CCP Overview

- CCP3 Capture Program
- CCP3 Storage Program
- CCP3 Comms/P&I Programs
- CCP4
- CCP Conclusions

The CCP was founded in 2000. As a partnership of several major energy companies, it provides a unique, collaborative forum for those companies to develop practical CCS knowledge and solutions that relate specifically to the oil and gas industry.


Since 2000 the CCP's expert Technical Teams, made up of engineers, scientists and geologists from member companies, have undertaken well over 150 projects to increase understanding of the science, economics and engineering applications of CCS.

In that time, the CCP has worked closely with government organizations - including the US Department of Energy and the European Commission – and more than 60 academic bodies and global research institutes. It has been recognised by the Carbon Sequestration Leadership Forum (CSLF) for its contribution to the advancement of CCS.

Its activities are monitored and reviewed by an independent Technical Advisory Board made up of CCS industry experts.

CCP3 "Demonstrate technologies that will reduce the cost and accelerate deployment of CCS" CCP

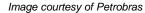
The project consists of four work teams, supported by Economic Modeling to build a fuller picture of the integrated costs for CCS:

- 1. **Capture**: aiming to reduce the cost of CO₂ capture from a range of refinery, in-situ extraction of bitumen and natural gas power generation sources
- 2. Storage Monitoring & Verification (SMV): increasing understanding and developing methods for safely storing and monitoring CO₂ in the subsurface
- 3. Policy & Incentives: providing technical and economic insights needed by stakeholders, to inform the development of legal and policy frameworks
- 4. **Communications**: taking rich content from the ongoing work of the other teams and delivering it to diverse audiences including: government, industry, NGOs and the general public

CCP Overview

- CCP3 Capture Program
- CCP3 Storage Program
- CCP3 Comms/P&I Programs
- CCP4
- CCP Conclusions

Refinery Scenario



- Field demonstration of Fluid Catalytic Cracking (FCC) oxy-firing capture technology at Petrobras, Brazil
- FCC is one of the main sources of oil refinery CO₂ emissions (20-30%)
- Aim: to evaluate operability, test start-up, shut down procedures and obtain data for scale-up

SUNCOR

TROBRA

CCP3

participating organizations

Heavy Oil Production – Steam Generation

Image courtesy of Cenovus Energy Inc.

Oxy-OTSG demonstration project

- 50 MMBtu/h fuel input (~75 tpd CO₂ emission)
- Host: Cenovus Energy Inc, Canada
- The field demonstration run confirmed the technical viability of the process.
- Similar temperature and flux profiles in air and oxyfiring

- Suncor Project Administrator, Project Manager
- Cenovus Energy Site Participant, Project Leader
- Praxair, Inc. Site Participant, Project Leader

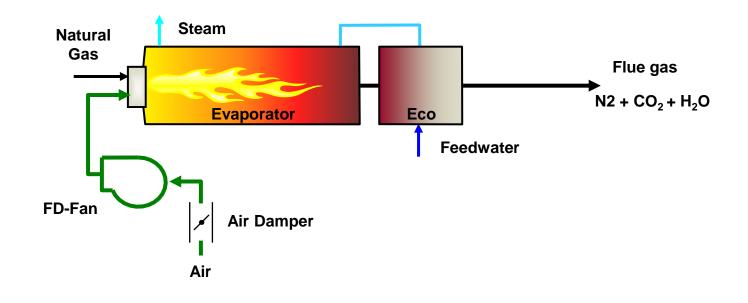
CCP3

participating organizations

• Other project partners and co-funders: CCEMC, CCP3, MEG Energy, Devon and Statoil

Sunco

Image courtesy of Cenovus Energy Inc.



- Existing commercial OTSG Boiler at Cenovus Energy Inc Christina Lake
- Retrofit with flue gas recirculation

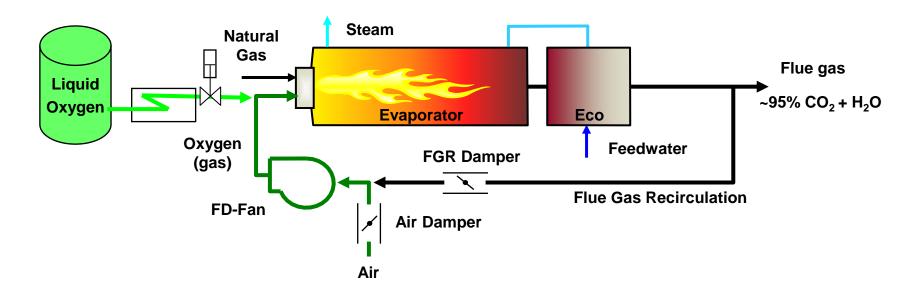
CCP3

participating organizations

Installation of oxygen supply and control integration

Project will demonstrate technical viability and safety of oxy-fuel combustion at operating in-situ site

PETROBRAS



- Existing commercial OTSG Boiler at Cenovus Energy Inc Christina Lake
- Retrofit with flue gas recirculation

CCP3

participating organizations

Installation of oxygen supply and control integration

Project will demonstrate technical viability and safety of oxy-fuel combustion at operating in-situ site

PETROBRAS

Air-fuel Oxy-fuel 70% load with small FGR flow 70% load with 2.5% J Burner

Hot refractory tile at burner provides stability for ignition

ETROBRA

- Luminous flame over tile is a result of a desired recirculation pattern
- Oxy-fuel flame darker and more slender than air-fuel flame
- Boiler darker with oxy-fuel, tube hangers showing similar temperatures

Image courtesy of TIW Western Inc.

Image courtesy of Cenovus Energy Inc.

Capture Team – Other Key Projects

Development projects

- Capture of CO₂ from refinery heaters using oxy-fired technology
- Chemical Looping Combustion (CLC)
- Membrane Water Gas Shift (MWGS)

Economic evaluation

A detailed study by Foster Wheeler on state-of-the-art technologies for the capture of CO₂

- Refinery process heaters (4 x 150 MMBTU/hr) US location
- Regenerator of FCC unit (60,000 bpd) US location
- Hydrogen production for chemical (Steam reforming) or fuel use (Autothermal reforming) – US location
- Natural Gas Combined Cycle (NGCC) power station (400 MW) European location
- OTSG for Steam Assisted Gravity Drainage (SAGD) oil extraction Alberta location

Calculated capture and avoidance costs include transportation and storage

Base Assumptions	Units	Value	Source	
Fuel Gas Price – US	USD/GJ	4.50	Gulf Coast Public Data	
Electricity Price - US	USD/MWh	70.00	Gulf Coast Public Data	
Fuel Gas Price – AB	USD/GJ	4.50		
Electricity Price - AB	USD/MWh	60.50		
Time Horizon	Years	25	CCP Assumption	
Power Intensity	tCO ₂ /MWh	0.60	Gulf Coast Public Data	
Steam Intensity for WHB FCC	tCO ₂ /t	0.19	CCP Generated Figure	
Heat to Produce Steam for FCC	GJ/t	3.13	CCP Generated Figure	
CO ₂ Transportation and Storage *	\$/t	9.1	CCP Generated From Published Data	

- Post-combustion steam consumption for solvent regeneration in the range of 2.7- 3.0 GJ/ton of $\rm CO_2$

SUNCOR

- *Storage costs based on the WASP Study Porous brine-filled aquifer <u>http://www.ucalgary.ca/wasp/reports.html</u>
- Transport costs based on capital costs factored from NETL data

CCP3

participating organizations

CCP3 Economic Results

CCP3

participating organizations

Application Scenario and Case Description	Fuel	CO ₂ captured	CO ₂ capture	CO ₂ avoided	CO ₂ capture cost	CO ₂ avoided cost	
Uı	nits	t/h	%	%	\$/t	\$/t	
Refinery - US Gulf Coast							
FCC - Post Combustion	Carbon	55.5	85.5	65.5	94.2	112.9	
FCC Oxyfuel Retrofit	Carbon	64.8	100.0	83.5	108.3	129.7	
Fired Heater - Post Combustion	Fuel gas	26.6	85.0	65.0	118.6	156.5	
Fired Heaters Pre-Combustion	Fuel gas	284.0	90.0	76.0	111.1	160.1	
Refinery SMR with Post-Combustion	Nat gas	58.4	85.5	65.5	95.9	123.3	
Oil Sands Steam Generation - Fort McMurray							
OTSGs - Post-Combustion	Nat gas	67.4	90.0	76.0	170.7	237.9	
OTSGs CLC	Nat gas	63.3	100.0	86.0	195.7	236.4	
Gas-Fired Power Generation - US Gulf Coa	st						
NGCC - Post-Combustion	Nat gas	126.1	85.5	73.7	97.9	113.6	

- Post-combustion solvent-based technology is still the most economic (or close second).
- CO₂ avoidance costs are very high, especially for the Heavy Oil (oil sands) scenario due to the Alberta location.

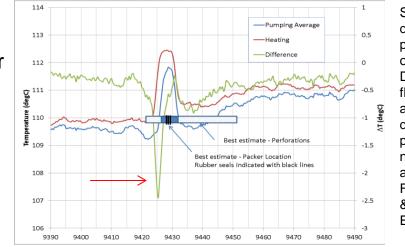
SUNCOR

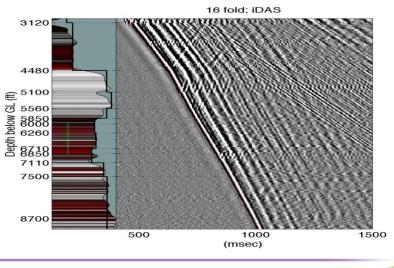
• The economic assumptions, such as, fuel cost, location factor, imported power cost/CO₂ footprint, process scale/configuration all have an impact on the cost numbers.

CCP Overview

- CCP3 Capture Program
- CCP3 Storage Program
- CCP3 Comms/P&I Programs
- CCP4
- CCP Conclusions

- Well Integrity Stability of well barrier function with geomechanical and geochemical alteration
- Subsurface Processes Physicochemical interactions that affect storage assurance
- Monitoring & Verification Retrospective performance of past deployments and decision support; Technology development
- Optimization Risk-based analysis of storage program development, economics of CO₂ EOR/storage and EGR utilization challenges in unconventionals
- Field Trialing Deployment and performance analysis of new and adapted monitoring technologies at third party field sites
- Contingencies Detection, characterization and intervention in unexpected CO₂ migration through top/fault seals


SMV Program – Field Trialing

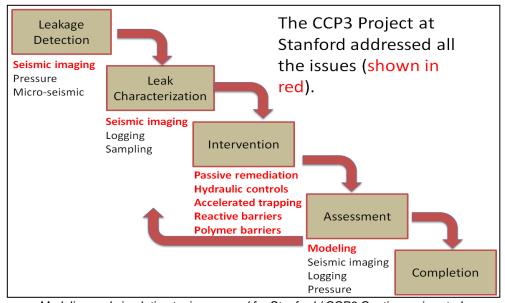

- Time-Lapse TCR and RST comparability of pre-flood, open hole resistivity and post-flood TCR logs to infer saturation [T. Dance, CO2CRC/CSIRO; A. Datey, Schlumberger]
- Borehole Gravity Resolution and reproducibility at Cranfield [SECARB; CSM, LBNL]
- Decatur Remote detection capability
 - InSAR [G. Falorni, TRE-Canada]
 - GPS [T. Dixon, U Florida]
- Modular Borehole Monitoring system
 - Design (Design) [T. Daley et al., LBNL]
 - Deployment (Citronelle) [SECARB, LBNL, EPRI, ARI]
- Downhole to surface EM evaluation at Aquistore [LBNL, Groundmetrics,]
- Soil Gas Monitoring Method [K. Romanak, UT-BEG]

CCP3

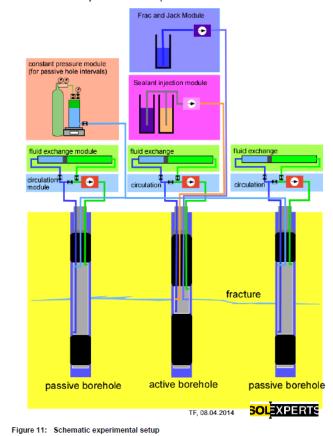
participating organizations

Successful diagnosis of pressure bleed off issue – i.e., DTS showed fluid influx above packer due to off depth perforations, not the MBM assembly (B Freifeld, LBNL & R Trautz, EPRI)

SUNCOR


Fiber Optic DAS VSP quality (T Daley, LBNL & D Miller Silixa)

SMV Program – Contingencies



Projects

- Detection, characterization and intervention in top or fault seal CO₂ leakage (Stanford) [S. Benson & A. Agarwal et al., Stanford]
- Feasibility and design for a "fracture-sealing experiment at Mont Terri Underground Lab. [P. Ledingham, GeoScience Ltd., et al.]

Mont Terri CS-B Experiment Schematic Experimental Setup

Modeling and simulation topics covered for Stanford / CCP3 Contingencies study

CCP Overview

- CCP3 Capture Program
- CCP3 Storage Program
- CCP3 Comms/P&I Programs
- CCP4
- CCP Conclusions

CCP3 Policy & Incentives Program

TROBRA

Program Objective: Inform the development of legal and policy frameworks through

- Technical and economic insights
- Project experience of regulatory processes

Results at a Glance

CCP3

participating organizations

- Local community benefit sharing Study, 2011 - Local community benefit sharing can help to address the potential imbalance between local costs vs.
 national or international benefits associated with some major developments
- Regulatory Study, 2012 Update of regulatory issues facing CCS projects, documented lessons learned and found that pathways for approval do exist

CCP3 Communications

Knowledge Sharing www.co2captureproject.org

Conferences

- **UNFCCC** (Side events) •
 - COP 16/17/18/19 in MX, ZA, QA, PL
- GHGT (Sponsor/Exhibitor/Presenter) •
 - GHGT10/11/12 in USA, JP, NL
- CCUS Conference (Partner/Exhibitor/Presenter) •
 - March 2009-2014 in Pittsburgh, PA
- CSLF (Recognized Project/Exhibitor/Presenter)
 - 4-7th November 2013 in Washington, DC
- CO2 Conference Week (Sponsor/Presenter) •
 - December 2012-2014 n Midland, TX •

PETROBRAS

BR

Our teams:

SMV:

Mark Bohm (Suncor), Marco Brignoli (eni), Stephen Bourne (Shell), Andreas Busch (Shell), Mark Chan (Suncor), Walter Crow (BP), Rodolfo Dino (Petrobras), Kevin Dodds (BP), Grant Duncan (Suncor), Scott Imbus (Chevron), Dan Kieke (Chevron), Claus Otto (Shell)

Capture:

Jonathan Forsyth (BP), Ivano Miracca (eni), Raja Jadhav (Chevron), Betty Pun (Chevron), Leonardo de Mello (Petrobras), Gustavo Moure (Petrobras), Jamal Jamaluddin (Shell), Mahesh Iyer (Shell), Frank Wubbolts (Shell), Dan Burt (Suncor), Iftikhar Huq (Suncor), David Butler (David Butler & Associates), Michael A. Huffmaster (P.E. LLC)

P&I:

Arthur Lee (Chevron), Sarah Edman (ConocoPhillips), Mark Bohm (Suncor), Eric Beynon (Suncor), Stephen Kaufman (Suncor), Mark Crombie (BP), C. T. Little (BP), Renato de Filippo (eni), Richard Rhudy (Electric Power Research Institute), Wolfgang Heidug (Shell) P&I partners:

Environmental Resources Management (ERM)

Communications:

Rachel Barbour (BP), Renato DeFilippo (eni), C V Greco (Petrobras), Tanis Shortt (Suncor), Peter Snowdon (Shell), Morgan Crinklaw (Chevron)

Comms partners:

Pulse Brands

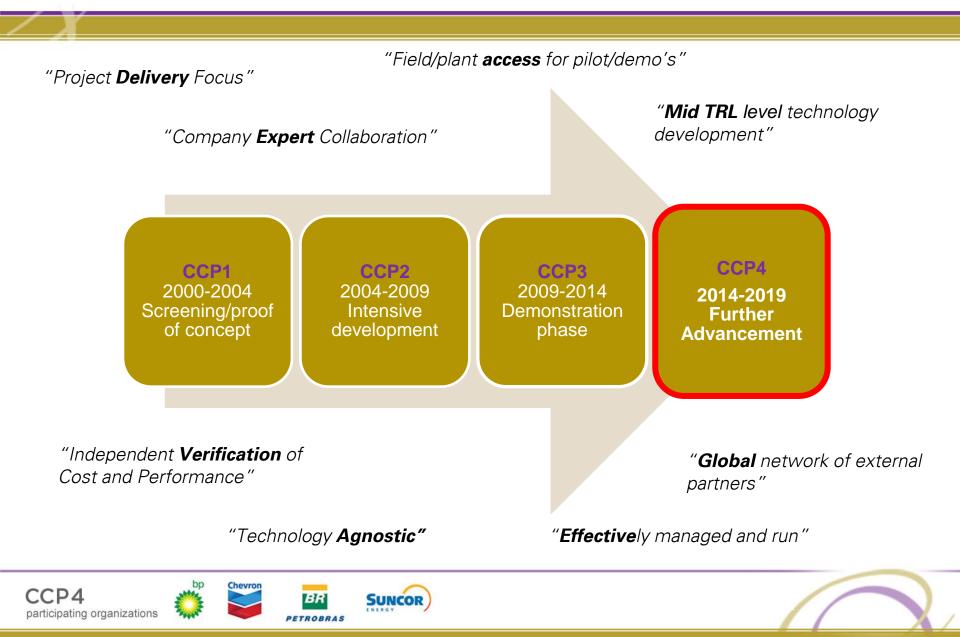
Acknowledging...

Capture Research partners, collaborators and funders:

Alberta Climate Change and Emissions Management Corporation (CCEMC), Cenovus FCCL LTD., Chalmers Tekniska Hoegskola AB (Chalmers), Consejo Superior De Investigaciones Cientificas (CSIC), CO2Solutions Inc., Devon Canada, Flemish Institute For Technological Research (VITO), Foster Wheeler Energy Ltd., Ion Engineering LLC., Johnson Matthey Public Limited Company (JM), John Zink Company LLC., Josef Bertsch Gesellschaft MBH & CO KG (Bertsch), MEG Energy, NTNU Faculty of Engineering Science and Technology Department of Energy and Process Engineering, Pall Corp., Petróleo Brasileiro S.A., Process Design Center B.V., Praxair Inc., Shell Global Solutions International B.V, Suncor Energy Services Inc., Statoil Canada Ltd., University of North Dakota Energy & Environmental Research Center (EERC), Vienna University of Technology (TUV)

SMV Research partners, collaborators and funders:

Lawrence Berkeley National Lab (LBNL), Los Alamos National Lab (LANL), Southeast Regional Carbon Sequestration Partnership (SECARB), Univ. Texas Bureau of Economic Geology (UT-BEG), Univ. Texas Center for Petroleum & Geological Engineering (UT-CPGE), Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), Midwest Geological Sequestration Consortium (MGSC), Colorado School of Mines (CSM), Stanford University, Schlumberger, TRE Canada, Univ. of Florida, EPRI, ARI, Groundmetrics, Merchant Consulting, Taurus Reservoir Solutions, Univ. of Aachen RWTH, Silixa, Geoscience Ltd Denbury.


CCP Overview

- CCP3 Capture Program
- CCP3 Storage Program
- CCP3 Comms/P&I Programs
- CCP4
- CCP Conclusions

CCP4 "Advancing CCS technology deployment and knowledge for the oil and gas industry" CCP

CCP4 Capture Program – Breakthrough Focus

CCP4 Focus

• Preference for technologies with <\$50/tonne CO₂ avoided cost (e.g., SMR syngas capture, ECM technology, other "breakthrough" technologies)

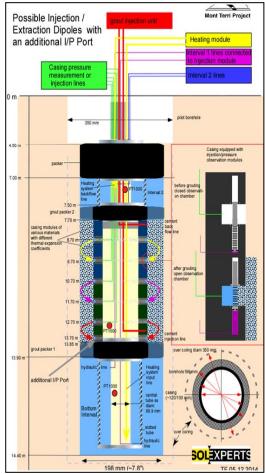
• Low priority for "incremental" improvement technologies (e.g., current post-C technologies with costs >\$100/tonne)

CCP4 Projects Under Consideration (partial list)

Scenario	Project/Study	SoW	Reasoning	
Refinery	SMR pre-C baseline study	Develop cost for a base case (i.e., aMDEA) technology	Low-cost CO_2 capture from SMR is a priority in CCP4	
Refinery	SMR pre-C capture technology	Economic assessment of a novel capture technology	Incremental cost reduction over the base case	
Refinery	ITM O_2 evaluation	Evaluate ITM O ₂ technology for oxy-FCC application	May reduce the cost of oxy-FCC technology	
Heavy Oil	FuelCell Energy's ECM technology	Make an assessment and possibly participate in pilot	Potential of $<$ \$50/tonne CO ₂ avoided cost	
Heavy Oil	ATK's supersonic solid CO ₂ formation technology	Techno-economic evaluation	Breakthrough technology for post-C	
NG Treating	Pilot test of near- commercial membrane	Design, manufacture and evaluate membrane modules	Reduces cost and weight for offshore application	

ccP4 participating organizations

CCP4 Storage Program – Well Integrity



Well Integrity

- Well survey with logging, through casing sampling & VIT or bench+ scale well experiments (e.g., Chevron's Mont Terri CS-A experiment)
- MBM-based in-situ sensors for well integrity
- Approaches to mitigating P&A'ed wells

Figure 2: Test location in Gallery 04 looking from DR Niche

Chevron's proposed Mont Terri CS-A experiment (schematic)

CCP Overview

- CCP3 Capture Program
- CCP3 Storage Program
- CCP3 Comms/P&I Programs
- CCP4
- CCP Conclusions

- Post combustion capture technologies have seen some recent improvements, but what does the future look like versus alternatives, and will this achieve the end goal?
- There are some promising technology solutions to dramatically reduce capture costs & cost effectively verify safe/secure storage at scale, so R&D needs to continue
- CCP looks to build on its experience & expertise, welcome new partners and collaborate with others to ensure success

Questions?

