

Improved Pore Space Utilisation

Task Force Members:

Australia (co-lead), France, IEAGHG, Japan, UAE & United Kingdom (co-lead).

Purpose

To investigate the existing capabilities in <u>improved</u> pore space utilisation for CO₂ storage

- Summarize effectiveness and readiness of the various techniques
- Technical proposals for necessary R&D to develop capability in most opportune technologies

Members: Australia, France, IEAGHG, Japan, UAE and the United Kingdom (UK)

any additional CSLF members would be welcomed

Rationale

Many storage cases may be undesirably costly relative to the pore space 'resource' utilised and large monitoring footprint.

- Utilised storage capacity is ~ 1 4 % of the pore space resource
- Large lateral spread of CO₂ relative to the volume stored

<u>Improved pore space utilisation</u> may be very beneficial to:

- increased storage capacity,
- reduced monitoring costs, and
- increased ability for 'hub' style storage operations.

Contents

1.	Introduction
2.	Background
2.1.	Storage Efficiency (utilized vs bypassed pore volume)
2.2.	Dynamic Capacity (pressure limitations)
2.3.	Residual Trapping (% of pore utilised)
3.	Non Technical considerations (i.e. Hubs, Regulating effective pore utilization, etc)
4.	Basis of Study
5.	Well Design
5.1.	Vertical Well vs Deviated Well
5.2.	Perforation Design
5.3.	Flow control
5.4.	Other ???
6.	Injection Operations
6.1.	Pressure Management (or not!)
6.2.	Plume steering
6.3.	Well cycling
6.4.	Other ???
7.	Reservoir Stimulation
7.1.	Geochemically Enhanced Injectivity
7.2.	Other ???
8.	Modified Injection
8.1.	Bubble Injection
8.2.	CO ₂ Saturated Water Injection
8.3.	Other ???
9.	Heterogeneous Reservoir Storage
9.1.	Tortuous Migration Pathways

Technical Report Contents

- Well Design:
 - Vertical or deviated wells; Perforation design; flow control
- Injection Operations
 - Pressure management; plume steering; well cycling; EOR (UAE)
- Reservoir Stimulation
 - geochemically enhanced injectivity
- Modified Injection
 - Micro-bubble injection (Japan); CO₂ saturated water injection (France)
- Heterogeneous Reservoir Storage (Australia)
 - Tortuous migration pathway; improved sweep in low permeability reservoir (Japan); rock types for higher residual trapping

What's Micro-bubbles?

carbon sequestration leadership forum

- √ Small size
- ✓ High solubility
- ✓ Low buoyancy

Dissolution of CO₂ micro bubbles

Swarm of microbubbles (Diameter: 200μm~50μm)

time step: 0.34 sec

Observe shrinking and dissolution of CO₂ microbubbles by image analysis

Schedule

- June 2016:
 - Activities populated by member in accordance to technology suite being investigated
- Oct 2016:
 - Task Force basis understood
 - technical reviews well underway
- April 2017:
 - Initial draft complete
 - Submitted for CSLF member review
- Oct 2017:
 - Member inputs incorporated
 - Final report submitted
 - Key technology development proposals

Next Steps

New Members in order to cover all activities