Otway Stage 2C Project Update

An active CSLF recognised project

Max Watson

Program Manager - Storage

Presenting at:
CSLF Technical Group Meeting
28th June 2016

CO2CRC the leader in Australian CCS research

- 1. We are the first company in Australia to have undertaken carbon capture and storage end to end, safely injecting, monitoring and containing 80,000 tonnes of CO₂ for more than a decade
- 2. We design, project manage, and fund in-field and laboratory based CCS projects with the best local and international researchers
- 3. We test novel technologies to determine their efficiency, accuracy, and confidence. Our work brings confidence to regulators, industry and the community.
- 4. Our Otway Research Facility has seen \$100m in investment in 10 years, making it the best infield CCS research centre in the world.

WHO IS CO2CRC

CO2CRC SUPPORTS INDUSTRY
TO REDUCE GREENHOUSE
GAS EMISSIONS THROUGH
CARBON CAPTURE & STORAGE
RESEARCH

- We are the first company in Australia to have undertaken carbon capture and storage end to end
- Our research demonstrates carbon capture and storage in-field using novel technologies. We test their efficiency, accuracy and costeffectiveness bringing confidence to industry and regulators
- We have safely injected, monitored and contained 80,000 tonnes of carbon dioxide for more than a decade
- We design, project manage and fund carbon capture and storage programs utilising the best international and local talent

CO2CRC strategic direction

CO2CRC STRATEGIC DIRECTION

CO2CRC OTWAY STAGE 1

- ▶ CO₂ storage in a depleted gas field
- ▶ Subsurface sampling

CO2CRC OTWAY STAGE 2

- Residual trapping in saline formation
- ▶ Validate surface monitoring

CO2CRC OTWAY STAGE 3

- Validation of sub-surface fixed array monitoring
- ▶ \$41m investment

STORAGE

AUSDEEP

- Leveraging \$100m in carbon capture and storage investment to develop clean subsurface energy options by understanding the sub-surface; heat flow, seismicity; fluid flow
- ▶ Engineering the subsurface reactants; energy resource; biominerals; geothermal; ground water; hydraulics

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 202

Hazelwood Brown Coal PCC 3 technologies

Mulgrave Brown Coal IDGCC 3 technologies

Membrane Vales
Point PCC

Hazelwood UNO MK3 PCC

Membrane & Adsorbent Otway Natural Gas

methane from high concentrations of CO₂
► A scalable plant for

A new technology for separating

 A scalable plant for on-shore and off-shore applications

CAPTURE

Capture R&D

Australia emerging gas fields holding higher levels of CO₂.

As backfill of gas becomes more urgent CCS presents a key solution to address the CO₂ issue.

To achieve this, technical improvements in CO₂ separation from natural gas is critical

Location of CO2CRC Otway Facility

The CO2CRC Otway Project Stage 2

Stage 2: 2007 – 2020

Demonstrate that CO₂ storage can be safely conducted at scale within a Saline Formation

- ✓ 2A :Drill CRC-2
- ✓ 2B: Measure parameters affecting residual and dissolution trapping in a saline formation
- ✓ 2B Extension: interactions with impurities & well test refinement
- 2C: Spatially track injected CO₂ in a saline formation
 - Minimum detection limit
 - Migration behaviour
 - Stabilisation

Stage 2C Monitoring program

4D seismic with buried receiver array acquired concurrently with 4D VSP

- Baseline: March 2015
- Monitor surveys: 5 kt, 10kt, 15 kt of injection (2016), 1&2 years post injection (January 2017 & 2018)

Offset VSPs

Trialing 4D seismic with buried DAS array, and continuous seismic sources (LBNL)

Passive seismic using buried receiver array

Continuous in- & above-zone pressure monitoring

Saturation logging

Geophone and fiber array installation: Trenches 80 cm deep, PVC cased boreholes 4 m deep

Otway Stage 2C preliminary results

- 1. 15,000 tonnes of CO₂, safely injected into the saline formation, is migrating as predicted.
- 2. Seismic & pressure monitoring resolution is beyond expectation
- Minimum detection levels of CO₂ have been identified
- 4. The combination of these results, with ongoing regular monitoring through to 2019, will de-risk the injection, monitoring and trapping of CO₂ in a saline formation giving confidence to technology users and regulators.

DE-RISKING THE STORAGE OF CO2 IN SALINE FORMATIONS

Saline formations have the greatest potential for CO₂ storage globally. Their utilisation will be necessary to ensure we remain within the COP21 2C target.

2015-2019

THROUGH THE MONITORING AND VERIFICATION OF 15,000 TONNES OF INJECTED CO2 WE WILL VALIDATE SALINE ROCK FORMATIONS FOR CARBON CAPTURE AND STORAGE BY:

VALIDATING
THE ACCURATE
MODELLING
OF CO2
STABILISATION
AND TRAPPING
IN A SALINE
FORMATION

UNDERSTANDING THE SAFE STORAGE CAPACITIES OF THIS RESOURCE

DEMONSTRATING THE MINIMUM DETECTION LEVEL OF CO2

Otway Stage 2 – pre 4D

Otway Stage 2 – 4D change still image

Otway Stage 2

Next Steps for Otway 2C

Evolution of monitoring for CCS:

- iDAS (LBNL), permanent source(LBNL)
 & passive seismic comparisons
- Reservoir zone and above zone pressure monitoring

Development of 'fit for purpose' M&V guidelines

- Technical capability limit
- Capabilities in leakage detection
- 1. Demonstration of plume stabilisation
- 2. Workflow for plume behaviour verification

Conformance between M&V and plume models

Monitoring KPAs for liability transfer

Otway Stage 3 2016-2020 objectives

- To deliver a permanently deployed subsurface and cost-effective real-time monitoring solution for industry
- 2. To increase the efficiency of CO₂ monitoring with new and adapted technologies
- 3. To reduce the surface footprint and impact of monitoring activities

REDUCING THE COST OF CO2 STORAGE

CO2CRC aims to accelerate the implementation of commercial carbon capture and storage projects by undertaking the validation of cost-effective subsurface monitoring technologies

2016-2020

BY 2020 WE WILL FULFIL THE FOLLOWING OBJECTIVES:

DELIVERY OF PERMANENTLY DEPLOYED, COST- EFFECTIVE REAL-TIME MONITORING SOLUTIONS

INCREASE
CO2 STORAGE
MONITORING
EFFICIENCY
WITH NEW
TECHNOLOGIES

REDUCE THE SURFACE FOOTPRINT AND IMPACT OF MONITORING ACTIVITIES

Otway Stage 3

Expressions of Interest to collaborate in the Evaluate Phase of CO2CRC's Otway Stage 3 subsurface monitoring project

DELIVERING OUTCOMES

- Determine, and demonstrate the most cost-effective subsurface monitoring solutions, saving industry hundreds of millions of dollars in monitoring over the life of a project
- Inject 40,000 tonnes of CO₂ to generate a plume analogous to a leakage event, as well as quantifying the effectiveness of capillary and solution trapping

Government, Industry and Research Partners

