






#### International Collaboration on Large Scale Saline Injection

**Jarad Daniels** 

Office of Clean Coal and Carbon Management United States Department of Energy June 2016



### Background

- 2013 CSLF Ministerial Meeting charged Policy Group to "identify and prioritize a focused set of collaborative actions where the CSLF could add the greatest near-term value"
- CSLF well-positioned to facilitate discussions on global collaboration efforts for large-scale CCS projects, whether as new green field projects or adding additional functionality and value to existing or planned commercial projects
- CSLF Policy Group in June 2015 approved initiative to coordinate development of CCS projects dedicated to testing large-scale CO<sub>2</sub> storage in saline formations
- Important factor was focus of most ongoing large-scale CCS projects on use of captured CO<sub>2</sub> for EOR
- Storing CO<sub>2</sub> in deep saline formations may ultimately be most important CCS option for achieving major CO<sub>2</sub> emissions mitigation



### **Initiative Timing**

Initial scope of effort was divided into two phases:

- <u>Phase I</u> developed preliminary list of candidate projects evaluated against initial selection criteria, which was discussed at October 2014 Policy Group Meeting
- <u>Phase II</u> focused on the development of:
  - Further information (e.g. geology, CO<sub>2</sub> supply, governance structures, potential CSLF member support) on a limited group of projects identified by the Policy Group
  - Project selection recommendations were presented at June 2015
    Policy Group Meeting
  - Initiated "Large-Scale Saline Storage Project Network" at end of 2015, following approval at November 2015 CSLF Ministerial



### Large-Scale Saline Storage Project Network

- Announced at 2015 CSLF Ministerial Meeting in Riyadh, Saudi Arabia
- Builds on success of "CO<sub>2</sub> Capture Test Center Network"
- This Network serves two purposes:
  - Facilitate collaborative testing of advanced technologies at large-scale saline storage sites
  - 2. Form global network of large-scale injection sites to share best practices, operational experience, and key learnings





### Large-Scale Saline Storage Project Network



- As first step, US Department of Energy (DOE) collaborated to identify opportunities to field test advanced technologies at Shell's Quest CCS Project in Alberta, Canada.
- DOE and Shell are collaborating in field tests to validate advanced monitoring, verification, and accounting (MVA) technologies for underground storage of CO<sub>2</sub>
- DOE and Shell will test novel fiber optic sensors and improved monitoring devices that can lower operating costs to measure and verify integrity of CO<sub>2</sub> storage sites
- Collaboration provides model for future efforts



## New Phase III Initiative Timing

- Large-scale carbon storage projects in saline formations, such as the Shell Quest Project, are critically important in global, commercial deployment of CCS
- CSLF can help facilitate real-world testing of promising technologies, such as MVA technologies, as projects stand up and technologies continue to develop.
- As more large-scale saline storage projects are developed and deployed throughout the world, they are encouraged to join and participate in this network.
- <u>Phase III</u> will focus on identifying more potential projects to add to the Large-Scale Saline Storage Project Network, by developing a preliminary list of candidate projects and collaborative topics for discussion at June 2016 Policy Group Meeting.



#### **Project Selection Criteria**

To determine the best initial candidates, Large-Scale Integrated Projects (LSIP) data base published by the Global CCS Institute (GCCSI) was screened to identify projects:

- That can achieve low-cost capture of sizeable amounts of CO<sub>2</sub> in a relatively near-term timeframe
- With varied geology that could accommodate different country interests
- Where project management and operators are amenable to discussing hosting an international consortium at the site and development of a governance structure



### Applying the Selection Criteria

 Two most restrictive criteria are amount of CO<sub>2</sub> captured and near-term timeframe, and the following projects most closely adhere to criteria and are in "operate" or "execute" project lifecycle stage

| Project<br>Lifecycle<br>Stage | Project Name                                              | State / District  | Country       | Volume CO <sub>2</sub><br>(mtpa) | Operation<br>Date        | Capture Type                                    |
|-------------------------------|-----------------------------------------------------------|-------------------|---------------|----------------------------------|--------------------------|-------------------------------------------------|
| Operate                       | Sleipner CO <sub>2</sub> Storage Project                  | North Sea         | Norway        | 0.9                              | 1996                     | Pre-combustion capture (natural gas processing) |
| Operate                       | Snøhvit CO <sub>2</sub> Storage Project                   | Barents Sea       | Norway        | 0.7                              | 2008                     | Pre-combustion capture (natural gas processing) |
| Operate                       | Quest                                                     | Alberta           | Canada        | 1.08                             | 2015                     | Industrial Separation                           |
| Execute                       | Illinois Industrial Carbon<br>Capture and Storage Project | Illinois          | United States | 1.0                              | 2016                     | Industrial Separation                           |
| Execute                       | Gorgon Carbon Dioxide<br>Injection Project                | Western Australia | Australia     | 3.4-4.0                          | 2017 (GCCSI<br>estimate) | Pre-combustion capture (natural gas processing) |



#### Applying the Selection Criteria

 The following projects most closely adhere to criteria and are in the "define," "identify," "evaluate," or "injection suspended" project lifecycle stage

| Project<br>Lifecycle<br>Stage | Project Name                                                                                               | State / District  | Country        | Volume CO <sub>2</sub><br>(mtpa) | Operation<br>Date | Capture Type                                    |
|-------------------------------|------------------------------------------------------------------------------------------------------------|-------------------|----------------|----------------------------------|-------------------|-------------------------------------------------|
| Define                        | Rotterdam Opslag en Afvang<br>Demonstratieproject (ROAD)                                                   | North Sea         | Netherlands    | 1.1                              | 2019-2020         | Post-combustion capture<br>(power generation)   |
| Identify                      | China Resources Power<br>(Haifeng) Integrated Carbon<br>Capture and Sequestration<br>Demonstration Project | South China Sea   | China          | 1.0                              | 2019              | Pre-combustion capture<br>(power generation)    |
| Evaluate                      | Don Valley Power Project                                                                                   | North Sea         | United Kingdom | 1.5                              | 2020              | Pre-combustion capture<br>(gasification)        |
| Evaluate                      | Korea-CCS 1                                                                                                | Offshore Korea    | South Korea    | 1.0                              | 2020              | Post-combustion capture<br>(power generation)   |
| Evaluate                      | Caledonia Clean Energy<br>Project                                                                          | North Sea         | United Kingdom | 3.8                              | 2022              | Pre-combustion capture (gasification)           |
| Evaluate                      | Korea-CCS 2                                                                                                | Offshore Korea    | South Korea    | 1.0                              | 2023              | Under evaluation (power generation)             |
| Evaluate                      | South West Hub                                                                                             | Western Australia | Australia      | 2.5                              | 2025              | Industrial Separation (fertiliser production)   |
| Evaluate                      | CarbonNet Project                                                                                          | Victoria          | Australia      | 1.0 - 5.0                        | 2020's            | Under evaluation                                |
| Evaluate                      | Teesside Collective Project                                                                                | North Sea         | United Kingdom | 2.8                              | 2020's            | Various                                         |
| Operate                       | In Salah CO₂ Storage                                                                                       | Krechba           | Algeria        | 0.0 (injection suspended)        | 2004              | Pre-combustion capture (natural gas processing) |



### Applying the Selection Criteria

• The following are examples of projects that do not adhere to large-scale criteria, yet can be considered important smaller-scale projects

| Project<br>Lifecycle<br>Stage | Project Name                           | State / District | Country | Volume CO <sub>2</sub><br>(mtpa)           | Operation<br>Date | Capture Type                               |
|-------------------------------|----------------------------------------|------------------|---------|--------------------------------------------|-------------------|--------------------------------------------|
| Operate                       | Aquistore                              | Saskatchewan     | Canada  | 35,000 Total<br>Tonnes (as of<br>Jan 2016) | 2014              | Post-combustion capture (power generation) |
| Operate                       | Tomakomai CCS<br>Demonstration Project | Hokkaido         | Japan   | 0.1                                        | 2016              | Hydrogen production unit                   |



#### Examples of Current Ongoing R&D Collaboration: Quest Project

The Quest project has provided a number of additional research topics related to MVA technologies that can be tested at their CO<sub>2</sub> injection site:

- Laser-based atmospheric detection of CO<sub>2</sub> covering large areas, including development of both improved laser technology and software
- Radar remote sensing (Quest has collected nearly two years of calibration data)
- Stable isotope analysis to address containment and conformance monitoring at a CCS site. A number of laboratory experiments and modeling work have already been conducted.

DOE/NETL has evaluated and discussed with Quest other potential cooperative areas, including:

- Near-surface leakage MVA activities using a field-ready <sup>14</sup>C isotopic analyzer
- Compact eye-safe scanning differential adsorption LIDAR (DIAL) for spatial mapping of CO<sub>2</sub>
- Surface and airborne monitoring technology using low cost infra-red gas analyzers
- Deep controlled source electromagnetic sensing for CO<sub>2</sub> plume detection and leakage based on CSEM (Controlled Source Electromagnetic Method)
- Greenhouse gas laser imaging tomography
- Real-time in-situ CO<sub>2</sub> monitoring (RICO2M) network for sensitive subsurface areas at storage sites
- Pressure-based inversion, data assimilation system (PIDAS) for CO<sub>2</sub> leakage detection
- Scalable, automated, semi-permanent seismic method to detect CO<sub>2</sub> plume extent during injection



#### Examples of Potential R&D Collaboration: Illinois Industrial CCS Project

ADM is the overall project leader, and has provided a number of research ideas that can be tested at their  $CO_2$  injection site:

- Advances in CO<sub>2</sub> plume modeling, to include:
  - Improvements in surface seismic data processing that provides enhanced imaging for thin layer (pancake) plume distribution.
  - Improvements in geomechanical modeling that integrate passive seismic monitoring with pressure front and extent of plume monitoring.
  - Development of acoustic source and receiver systems (i.e., sonar) that can be used for monitoring real time changes in the site's acoustic signature.
  - Improvements in seismic monitoring approaches and technologies that allows real time seismic monitoring with enough sensitivity to pick up both P and S waves.
- Advances in reservoir monitoring, long-term CO<sub>2</sub> storage site monitoring and modeling approaches and technologies, especially those that can reduce the cost and time frame for storage site operational and post-operational reservoir monitoring.



# Decatur Site Overview

VW1 (DAS) or receivers integrated with a new well completion.

GM1 existing 30 level geophone array.

Crosswell Data Acquisition

Reflecto

Receivers

Source

#### - GM#2 - CCS#2

N#2

Deploy piezo electric or other type of source in CCS#1 using an automated winch and source control system. Program the system to generate seismic sweeps at preselected depths. Use VW1 and GM1 for cross well CASSM. Monitoring changes in CCS#1 plume and the development of the CCS#2 plume.

#### CO<sub>2</sub> Storage Data Sharing Consortium

- To facilitate this effort, Norway-US Bilateral Storage Working Group is proposing to establish International CO<sub>2</sub> Storage Data Sharing Consortium.
- Main objective: To promote sharing of reference datasets from pioneering CO<sub>2</sub> storage projects in order to accelerate improved understanding, build capacity, reduce costs and uncertainty of CO<sub>2</sub> storage.
- General terms: Limited reference datasets will be offered by projects on a case-by-case basis to the worldwide research community, under terms set out in non-disclosure agreements (NDAs) principally aimed at ensuring the datasets are properly understood and acknowledged. Studies arising from use of the datasets must be checked with the data owners prior to publication and the source of the data should be appropriately acknowledged.



#### **Next Steps**

A decision by Policy Group is needed as to:

- Whether to proceed with actively seeking partners for the Illinois Industrial CCS projects as part of the Large-Scale Saline Storage Project Network (Network)
- How to handle potential additional candidate sites to be proposed to the Network, such as projects in the "define," "evaluate," or "identify" project lifecycle stage
- Potentially as a subset to the Network, how to handle projects that do not meet the definition of a large-scale integrated CCS projects (at least 800,000 tonnes of CO<sub>2</sub> annually for a coal–based power plant, or at least 400,000 tonnes of CO<sub>2</sub> annually for other emissions–intensive industrial facilities) but are still important potential partners
- Invite additional partners to join China and the United States in Task Force



# Questions/ Discussion

