

Challenges in the Transition from of CO₂-EOR to CCS

Stefan Bachu, Canada Chair of the TG Task Force on Technical Challenges in the Transition from CO_2 -EOR to CCS

Background

Origin of the TG Task Force

- At the CSLF Ministerial Meeting in Beijing, P.R. China, in September 2011, the CSLF Charter was amended to include CO₂ Utilization Technologies (the "U" in CCUS)
- On the Storage side, CO₂ utilization means
 - Use and storage of CO₂ in enhanced oil recovery proven technology! – the objective of the Task Force on "Technical Challenges in the Transition from CO₂-EOR to CCS"
 - In other enhanced energy recovery operations (gas, coalbed methane, shale gas and oil, geothermal) unproven and/or untested technology

TG Task Force Findings - 1

- There is sufficient operational and regulatory experience for this technology to be considered as being mature, with an associated CO₂ storage rate of the purchased CO₂ greater than 90%.
- The main reason CO₂-EOR is not applied on a large scale outside west Texas in the United States is the unavailability of high-purity CO₂ in the amounts and at the cost needed for this technology to be deployed on a large scale.
- The absence of infrastructure to both capture the CO₂ and transport it from CO₂ sources to oil fields suitable for CO₂-EOR is also a key reason for the lack of large scale deployment of CO₂-EOR.

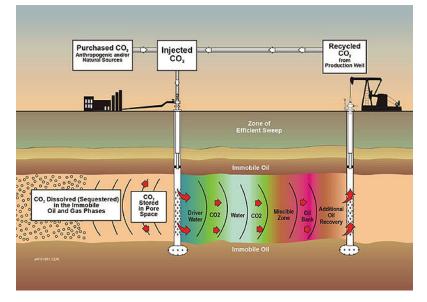
TG Key Findings - 2

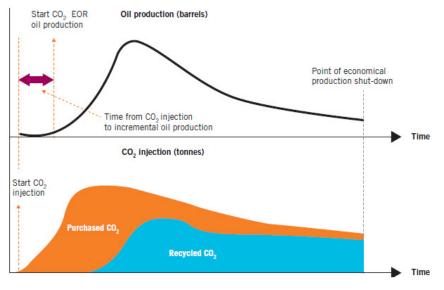
- There are a number of commonalities between CO₂-EOR and pure CO₂ storage operations, both at the operational and regulatory levels, which create a good basis for transitioning from CO₂-EOR to CO₂ storage in oil fields.
- There are no specific technological barriers or challenges *per se* in transitioning and converting a pure CO₂-EOR operation into a CO₂ storage operation. The main differences between the two types of operations stem from legal, regulatory and economic differences between the two.
- A challenge for CO₂-EOR operations which may, in the future, convert to CO₂ storage operations is the lack of baseline data for monitoring.

Recommendation by TG Task Force to the Policy Group

- In order to facilitate the transition of a pure CO₂-EOR operation to CO₂ storage, operators and policy makers have to address a series of legal, regulatory and economic issues in the absence of which this transition can not take place.
- The Policy Group establish a Task Force to examine and address "Policy, Legal and Regulatory Challenges in the Transitioning from CO₂-EOR to CCS"

Storage of CO₂ in CO₂-EOR Operations


8


Phases of Oil Production

- 1. **Primary recovery**: oil is produced under reservoir pressure forces. As oil is produced, reservoir pressure declines to the point that production declines. Oil and reservoir water, and gas, if present, are produced at producing wells, separated and:
 - a. Oil is sent to market
 - b. Gas is vented, flared or captured and sent to market
 - c. Reservoir water is disposed off
- 2. Secondary recovery: water is injected in the reservoir to increase pressure and also push oil towards producing wells. Same separation and handling processes apply.
- **3. Tertiary recovery**: gas or solvent is injected in the reservoir to lower oil viscosity (e.g., CO₂, natural gas, foams, polymers, steam, etc.), increasing oil mobility and also push it to injection wells

Diagrammatic Representation of a CO₂-EOR Operation

www.c/lforum.org

Incidental CO₂ Storage in CO₂-EOR Operations

 CO_2 Injection Retention = $\frac{CO_2$ Injected - CO_2 Produced CO_2 Injected $\approx 50\%$ on average

$$CO_{2} Storage Retention = \frac{CO_{2} Injected - CO_{2} Produced - CO_{2} Losses}{CO_{2} Purchased} > 90\%$$

From an oil-producer point of view, CO_2 losses include CO_2 lost in the reservoir, but from a storage point of view this CO_2 is still stored, as opposed to fugitive CO_2 losses

Legal and Regulatory Differences between CO₂-EOR and CO₂ Storage in Deep Saline Formations

CO₂-EOR

CO₂ Storage in Deep Saline Formations

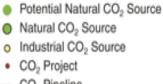
Commercial O&G Model!

Waste Disposal Model!

CO₂-EOR World Experience

- 1. USA: 127 miscible and 9 immiscible, since 1974; >7000 CO₂ injection wells
- 2. Canada: 7 miscible, since 1984, > 80 CO_2 and acid gas (CO_2+H_2S) inj. wells
- 3. Brazil: 3 immiscible, since 1991
- 4. Hungary: 1 immiscible
- 5. Turkey: 1 immiscible since mid-1980s
- 6. Trinidad and Tobago: 5 immiscible, since 1974

The analysis is based on US and Canada's experience, since both have developed legal and regulatory frameworks in place for CO₂-EOR and CCS


www.crlforum.org

CO₂-EOR in the U.S.

American Oil & Gas Reporter, May 2014

3200 mi. (5150 km) pipeline; 3100 MMcf/d (65 Mt/yr) CO₂

----- Planned CO₂ Pipeline

CO₂-EOR

- 1. Driven by profit and market forces
- 2. CO_2 is a valuable commodity
- 3. Objective: maximize oil production while minimizing CO₂ purchase
- 4. Reservoir pressure remains below initial pressure, low risk operation to groundwater and other resources

CO₂ Storage in Deep Saline Formations

- 1. Driven by regulations
- 2. CO₂ is "waste" to be disposed of
- 3. Objective: maximize CO₂ storage
- Reservoir pressure increases above the initial pressure and is limited by regulatory agencies: higher risk!

Where Are the Main Legal and Regulatory Differences between CO₂-EOR and CCS Operations

- Acquisition and transportation of CO₂ are governed in both cases by basic commercial law, and by federal and/or state/provincial regulations regarding pipeline right of access, construction, operation and safety
- Injection of CO₂ is governed by different laws and regulations regarding acquisition of PNG or Mineral rights versus rights to the pore space, well construction, monitoring and liability

Jurisdictional Differences between CO₂-EOR and CO₂ Storage

CO₂-EOR

- 1. Governments interested in royalties
- 2. Under jurisdiction of economic departments (ministries)
- 3. Tenure and permitting under Oil and Gas (PNG) or Mineral legislation
- Regulated and monitored by State and Provincial Oil and Gas regulatory agencies

CO₂ Storage in Deep Saline Formations

- 1. Main concerns: safety and permanence of storage
- 2. Under jurisdiction of environment departments (ministries)
- 3. Patchwork tenure and permitting
- Regulated by federal EPA in the U.S. under the Underground Safe Drinking Water Act, by provinces in Canada under injection regulations

Subsurface Ownership

- Private ownership in the U.S. based on surface land ownership ("to the center of the Earth"), including federal lands
- Surface and subsurface ownership is mostly split in Canada, with the Crown generally owning the subsurface rights and minerals
- In Alberta the Province recently legislated Crown ownership of the pore space (for CCS) regardless of the ownership of the mineral rights

Well Construction Differences between CO₂-EOR and CO₂ Storage

CO₂-EOR

CO₂ Storage in Deep Saline Formations

Class II wells in U.S.

New Class VI wells in U.S. based on higher risk

Same well class in Canada

Common law for damage from injection, financial security (bonds) required for wells

Liability Differences between CO₂-EOR and CO₂ Storage

CO₂-EOR

- 1. Operator liable during operations
- 2. Operator liable only for wells after abandonment
- "Orphan Wells" funds established, into which industry contributes, to take care of wells with no owner
- 4. No liability for the CO₂ left in the reservoir
- 5. CO_2 can be withdrawn for reuse

CO₂ Storage in Deep Saline Formations

- 1. Operator liable during operations
- 2. Where legislation or regulations have been introduced, the operator is liable for wells and the CO_2 in the ground for the duration of the "Closure Period"
- 3. In some jurisdictions the government agreed to take over long-term liability, in others did not, or no decision was made

19

Reporting Differences between CO₂-EOR and CO₂ Storage

CO₂-EOR

CO₂ Storage in Deep Saline Formations

Depending on jurisdiction, the operator has to report to the state or provincial oil and gas regulatory agency wellhead injection rate, pressure, temperature and composition of the injected CO_2 stream, and the fluids produced at producing wells (oil, water, CO_2 , methane) – **Black box material balance** Much more stringent reporting requirements to EPA in the US or to provincial and federal environment departments in Canada, including subsurface parameters greenhouse gas accounting

Policy Issues in CO₂-EOR Transition to CCS

- Policy and regulatory framework for CO₂ storage in oil reservoirs, including incidental and incremental CO₂ storage, for CO₂-EOR to be considered as CO₂ storage operations
- 2. Legislation for tenure and permitting of CO_2 -EOR operations transitioning to CO_2 storage operations
- 3. Long-term liability for CO_2 storage in CO_2 -EOR operations that have transitioned to CO_2 storage
- 4. Monitoring and well status requirements for oil reservoirs, including baseline conditions for CO₂ storage
- 5. Reporting of stored CO_2 (it would include purchased CO_2)
- 6. Jurisdictional responsibility for CO_2 storage in CO_2 -EOR operations:
 - a) In regard to national-subnational jurisdiction in federal countries, and
 - b) Organizational jurisdiction (environment versus development ministries/departments).

Questions and Comments?