

CO₂ removal at Sleipner

Carbon Sequestration Leadership Forum. CO₂ Capture Interactive Workshop Bergen, Norway. June 14, 2012

Eivind Johannessen, Statoil

Outline

- Introduction to the Sleipner field
- The CO₂ removal unit on Sleipner
 - Design
 - Operational experience and debottlenecking
- Improved understanding through Statoil R&D work
- Concluding remarks

The Sleipner area

The Sleipner Vest Field - Key Characteristics

- Largest gas/condensate field in the Sleipner area (North Sea), on stream in 1996
- Partners: Statoil operator (58,35 %), ExxonMobil* (32,24 %), Total** (9,41 %)
- Higher CO₂ content (4-9%) than the gas export quality specification allows (2,5%)
- Capture absorption at 100 bar, 60-80°C, Amine 45wt% MDEA
- Decision to store geologically the captured CO₂ was based on willingness to try
 out new technology and the CO₂ tax incentive
- Sleipner CCS is an internationally-recognised benchmark project

The CO₂ chain on Sleipner

Sleipner CO₂ injection site - Location

- CO₂ from the Sleipner field is stored in the Utsira Formation, North Sea
- Reservoir unit at 800-1100 m depth
- One CO₂ injector 36 meter perforation at ~1012 meter (TVD)
- Injected gas is ~98% CO₂
- 13,5Mt CO₂ have been injected (as of May 2012, ~0,9M per annum)

CO₂ Plume outline

Sleipner CO₂ removal : Design

Sleipner CO₂ removal operation - challenges and actions taken

Feed gas system:

Challenges

Liquid HC carry-over from scrubbers

- foaming
- unstable absorbers
- reduced absorption rate

Actions

 Installed a new seperator/scrubber technology developed by Statoil

CO₂ absorbers:

Challenges

- hydraulic problems
- unstable operation
- liquid carry over
- gas carry under

Actions

- re-designed liquid/gas distributors
- improving degassing functions
- changing packing material from structured to random packed
- → Increase in hydraulic capacity of liquid (140%) and gas (115%)

Amine regeneration plant:

Challenges

- lack of CO2 cyclic capacity
- too optimistic vapour/liquid equilibrium data
- the rate activator was not working as intended

Actions

· no activator is used

Summary:

- The plant's stability has improved
- Production has increased to 110%

Design versus real operating conditions

	Original design	Capacity test
CO ₂ in feedgas	100 %	95 %
Amine solution	aMDEA	MDEA
Amine circulation	100 %	138 %
Heat requirement	100 %	174 %
Cooling requirement	100 %	215 %
CO ₂ in export gas	2.5 mol%	2.5 mol%

Statoil R&D: Solvent properties at actual conditions

- CO₂ absorption capacity
- Mass transfer and kinetics
- ... at actual pressure, temperature and composition

Shortcomings in commercial simulation tools

Example: The effect of amine concentration

The effect of total pressure on the CO₂ capacity of the solvent

Concluding remarks

- 1) The optimal design of a CO₂ removal unit like the one at Sleipner is a trade-off between:
- Investment cost
 - reduced weight and space are favourable.
- Lost or reduced production
 - avoid bottlenecks by having large enough design margins
 - high availabilty
- 2) Compared to CO₂ capture from flue gases, operating cost plays a less significant role in CO₂ removal from natural gas.
 - Heat requirement is usually not counted as operating cost for the amine unit
- 3) Validated modeling and design tools are essential for optimal design of the CO₂ removal unit.

There's never been a better time for good ideas

CO₂ removal at Sleipner

Eivind Johannessen
Principal Researcher
E-mail address: eijoh@statoil.com

Tel: +4790913342

www.statoil.com

