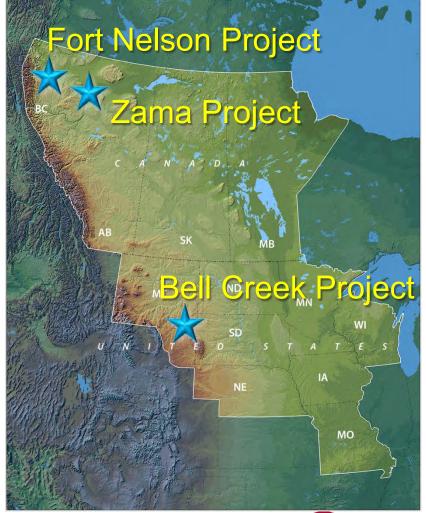


EERC Partnership for CO₂ Capture (Including Fort Nelson and Zama Project)

Presented at the Carbon Sequestration Leadership Forum Bergen, Norway June 14, 2012

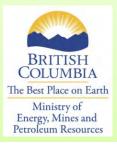
Energy & Environmental Research Center


Mike Holmes Deputy Associate Director for Research

© 2012 University of North Dakota Energy & Environmental Research Center.

Plains CO2 Reduction Partnership (PCOR) Commercial-Scale Demonstration Phase

- Two 1-million-ton/year-orgreater-scale demonstrations
 - Saline
 - Enhanced oil recovery (EOR)
- Ongoing and effective public outreach
- Continuing regional characterization
- Continued involvement in other carbon dioxide (CO₂) storage projects in the region.
- Continued involvement in carbon capture and storage (CCS) and CO₂/EOR regulations



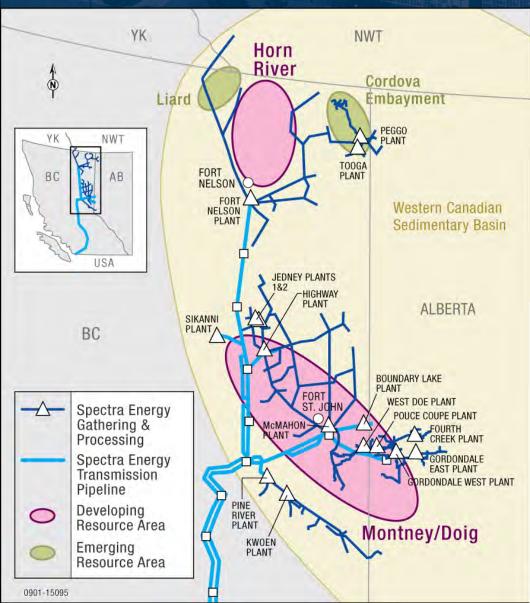
Fort Nelson Organizational Chart

Commercial Partners

Regulatory Partners

Natural Resources Canada

EERC PCOR Partnership Fort Nelson Demonstration


Research Partners

Fort Nelson Gas Plant

- 1 Bcf/d raw gas-processing capacity largest facility of its kind in North America.
- Spectra Energy gathering and processing assets are strategically positioned in the growing Horn River Basin, processing both conventional and unconventional shale gas resources.
- The Fort Nelson CCS project is a potential solution to mitigate CO₂ emissions as shale gas production grows.

Bell Creek Organizational Chart

Commercial Partners

Bell Creek

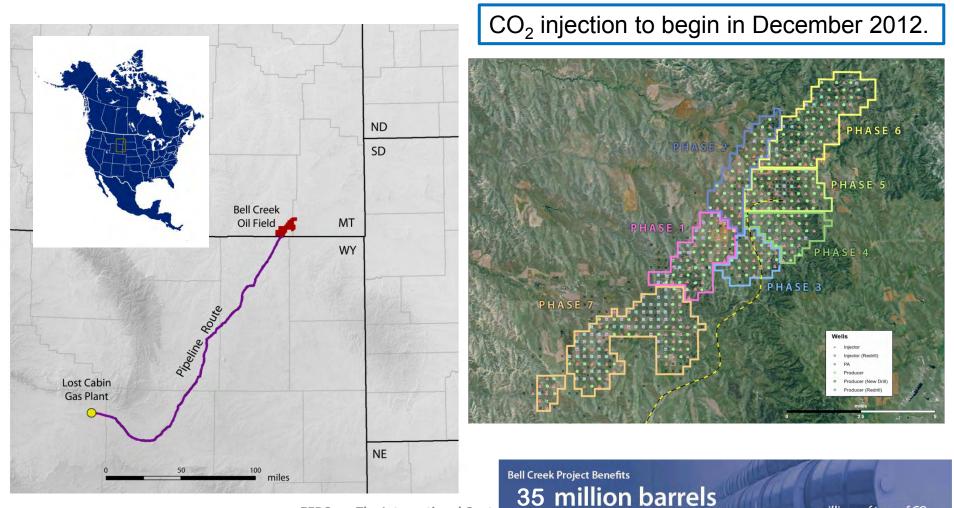
EERC PCOR Partnership Bell Creek Demonstration

Regulatory Partners

Wyoming Office of State Lands and Investments

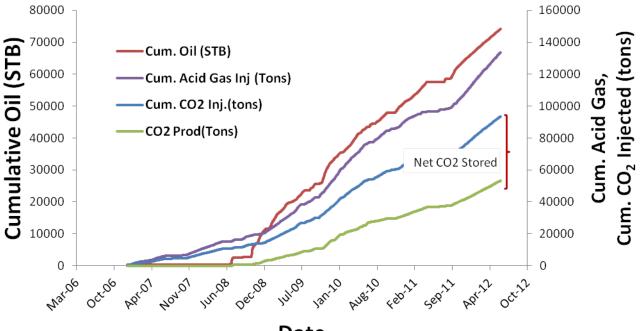
Wyoming Oil and Gas Conservation Commission

Montana Board of Oil and Gas Conservation



Bell Creek Logistics

232-mile pipeline operational by December 2012.



EERC... The International Cente of incremental oi

... millions of tons of CO₂ safely in storage

Zama Project Update - Cumulative Injection and Production through May 28, 2012

Cumulative Oil and Injected CO₂ Zama F Pool

Date

- Acid Gas Injected: 133,550 tons
 CO₂: 93,485 tons
- Oil Produced (bbls): 74,202 bbls
- Net CO₂ Stored: 40,357 tons

EERC... The International Center for Applied Energy Technology®

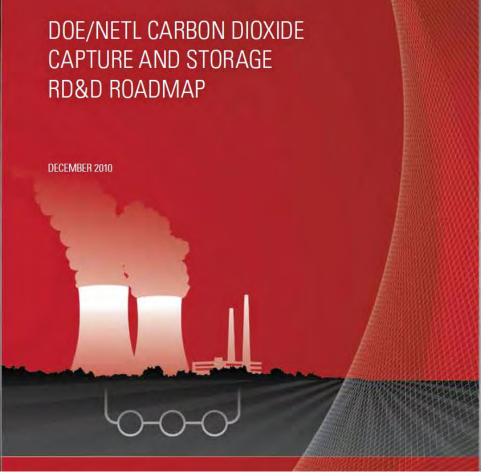
Conclusion

The PCOR Partnership region has huge CCUS potential!

EERC . . . The International Celes for Ann

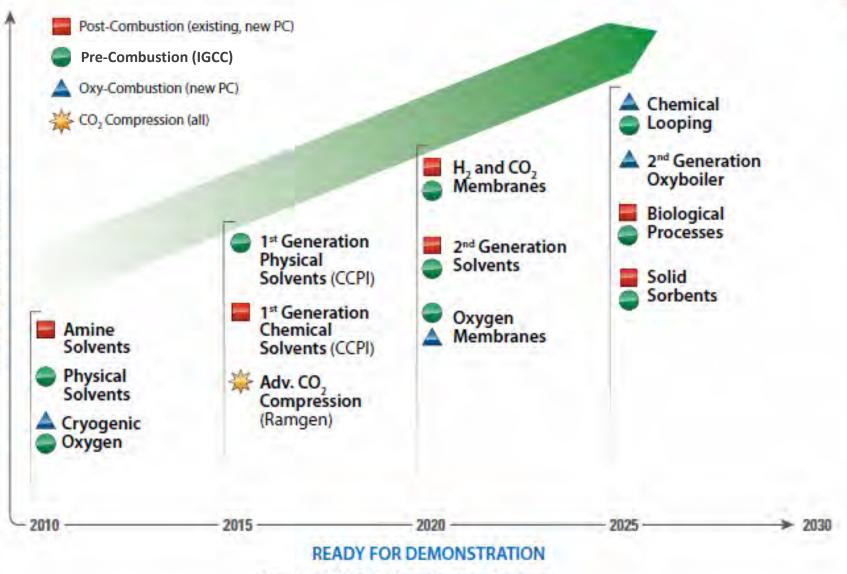
echnology®

Interactive CO₂ Capture Technology Summary


	Partners-Only	pport System	POR	EERC		
DSS House	HCM Partmentage	Reter Directory	HAC Quelants State	(May		
11-11/1	CO, Capture					
Dig Televiet		A Longer & Court	and the second second			
COs Destree Testeen	at a state of the second second second		the capture and storage of ODy and other pre- reliable to pickel closely charge. The preset			
The Lastice Carson		f emasor or they can be removed from the				
Sectory Strept	CO. Capture					
Terretial Screpe	Capture of CO ₃ can be per	formail al Unas porta in Dia power produc	Sec process			
flue	1. Before combusti	an. CO, is reptired in invitantion with per-	Fristian in reforming			
Comes of Terray			a is composed primarily of COy and water. Typ fire performed by performation are as			
Dep. Marriel	maund it product	a relatively pure stream of COL				
CARDA MARKIN			otion (505) (Remitter and physical), adaptifier ping and CO ₂ hydralic formation. The most op			
fail Netaphoed	summercial tectrol	logy available is amine couldbing, a chemics	al absorption bedrology. Two of the more pie	neis.		
Field Container Tiple	Christian Sultan	a abairston methods are the Rectao [®] and	Selecci" processes			
Democratica Desperi	CO, Compression					
literature stage	After the CO ₂ is septimed, atlenge etc. CO ₂ must be	it must be immunerated for either starage pro- compressed to ethod, 1500 to 2000 per fort	on to built bangoit or directo put vito a par- bangoit in a pipeline. Compression is anargo	ing to Da		
Vision for Database	monuel methods of com	gression are whiter development		3.25		
Progrid Street.		AND IN THE REAL				
Veg to Stores		ONT	A DECK			
with design freezes	10 M 10		10 10 10	-6		
THE POLY THEY	261	a 11 - 6		Contract of Contract of Contract		
Company and the	and interaction	17 100				
Bartonites /	DEM/USE		MARCHINE CONTRACTOR	10		
4 88 8	CO, Storage					
THE PARTY OF	There are has hopes of CO	L storage				
ATI AS	1. Mestopic elerapi	Puotves captures COs at a source before	t use to amitted to the atmosphere. The mile	Cature .		
ALL LANGE	energy would use	specialized processes to capture CO ₂ at larg	an elaborary anuree like factories or gover pl	atts and then		
Inclusion of the		COLUMN TWO IS NOT			Other	
to load error (italian) Jecter	Absorption	osorption Adsorption Membranes				
ACABAN-PA-	Ausorption	Adsorption	Wempranes		A	
THE PART OF THE PART				Mineralization	Bashasataa	and the second
THE OWNER ADDRESS OF		MANNAN Y		witheralization	Reduction	Cryoge
-	XXXXXXXXXX	Physical X	() Manager a			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	🗙 Physical 🕅	(PSA, TSA)	- Organic		The second s	P
	0000000000	Strong July		the second s	Biological	
	Organic Solvents	Zeolites	Polymeric	 Disposal 		
		Carbon	Membranes		(eg, algae)	
	Selevol					
	Selexol		Permeance	Motal Carbonator	Algel Grouth (o.g.	
	Rectisol	SI/AI Gels	Permeance Selective	Metal Carbonates	Algal Growth (e.g.,	
	Rectisol Purisol			Metal Carbonates	for biofuel	
	Rectisol	Chemical	Selective Size selective Liquid		for biofuel production)	
	Rectisol Purisol	Chemical	Selective Size selective	Metal Carbonates	for biofuel production) Greenhouse	
	Rectisol Purisol Other		Selective Size selective Liquid		for biofuel production)	
	Rectisol Purisol	Chemical	Selective Size selective Liquid	Froduct	for biofuel production) Greenhouse	
	Rectisol Purisol Other	Chemical (TSA) Metal Organic Frameworks	Selective Size selective Liquid Membranes		for biofuel production) Greenhouse (higher plant)	
	Rectisol Purisol Other Chemisal	Chemical (TSA) Metal Organic	Selective Size selective Liquid	Froduct Cementlike Materials	for biofuel production) Greenhouse	
	Rectisol Purisol Other Chemisal Amines	Chemical (TSA) Metal Organic Frameworks (MOFs) Supported	Selective Size selective Liquid Membranes	Froduct	for biofuel production) Greenhouse (higher plant) Chemical	
	Rectisol Purisol Other Chemisal Amines MEA	Chemical (TSA) Metal Organic Frameworks (MOFs)	Selective Size selective Liquid Membranes	Froduct Cementlike Materials Metal	for biofuel production) Greenhouse (higher plant)	
	Rectisol Purisol Other Chemical Amines MEA Other Amines	Chemical (TSA) Metal Organic Frameworks (MOFs) Supported Amines Metal Oxides	Selective Size selective Liquid Membranes Inorganic Metallic Ceramic	Froduct Cementlike Materials Metal	for biofuel production) Greenhouse (higher plant) Chemical	
	Recisol Purisol Other Chemical Amines MEA Other Amines Ammoria	Chemical (TSA) Metal Organic Frameworks (MOFs) Supported Amines	Selective Size selective Liquid Membranes Inorganic Metallic Ceramic	Froduct Cementlike Materials Metal	for biofuel production) Greenhouse (higher plant) Chemical Electrofuels	
	Rectisol Purisol Other Chemical Amines MEA Other Amines Ammonia Caustics	Chemical (TSA) Metal Organic Frameworks (MOFs) Supported Amines Metal Oxides	Selective Size selective Liquid Membranes Inorganic Metallic Ceramic	Froduct Cementlike Materials Metal	for biofuel production) Greenhouse (higher plant) Chemical Electrofuels	
	Rectisol Purisol Other Chemical Amines MEA Other Amines Ammonia Caustics Amino Acid Salts	Chemical (T5A) Metal Organic Frameworks (MOFe) Supported Amines Metal Oxides (chemical looping)	Selective Size selective Liquid Membranes Inorganic Metallic Ceramic Other	Cementlike Materials Metal Bicarbonates	for biofuel production) Greenhouse (higher plant) Chemical Electrofuels	
	Rectisol Purisol Other Chemical Amines MEA Other Amines Ammonia Caustics	Chemical (TSA) Metal Organic Frameworks (MOFs) Supported Amines Metal Oxides (chemical looping) Mixed	Selective Size selective Liquid Membranes Inorganic Metallic Ceramic Other	Cementlike Materials Metal Bicarbonates	for biofuel production) Greenhouse (higher plant) Chemical Electrofuels	
	Rectisol Purisol Other Chemical Amines MEA Other Amines Ammonia Caustics Amino Acid Salts Ionic Liquids	Chemical (T5A) Metal Organic Frameworks (MOFe) Supported Amines Metal Oxides (chemical looping)	Selective Size selective Liquid Membranes Inorganic Metallic Ceramic	Cementlike Materials Metal Bicarbonates	for biofuel production) Greenhouse (higher plant) Chemical Electrofuels Polymers	
	Rectisol Purisol Other Chemical Amines MEA Other Amines Ammonia Caustics Amino Acid Salts	Chemical (T5A) Metai Organic Frameworks (MOFs) Supported Amines Metai Oxides (chemical looping) Mixeei Abs/Ads	Selective Site selective Liquid Membranes Inorganic Metallic Ceramic Other Alternative M	Froduct Cementlike Materials Bicarbonates Mass Transfer	for biofuel production) Greenhouse (higher plant) Chemical Electrofuels	ostcombu
	Rectisol Purisol Other Chemical Amines MEA Other Amines Ammonia Caustics Amino Acid Salts Ionic Liquids Catalysts with	Chemical (T5A) Metal Organic Frameworks (MOFs) Supported Amines Metal Oxides (chemical looping) Mixed Abs/Ads Solid-Supported	Selective Size selective Liquid Membranes Inorganic Metallic Ceramic Other	Cementlike Materials Metal Bicarbonates	for biofuel production) Greenhouse (higher plant) Chemical Electrofuels Polymers Primarily Pr	
	Rectisol Purisol Other Chemical Amines MEA Other Amines Ammoria Caustics Amino Acid Salts Ionic Liquids. Catalysts with Chemical Absorbents	Chemical (T5A) Metai Organic Frameworks (MOFs) Supported Amines Metai Oxides (chemical looping) Mixeei Abs/Ads	Selective Site selective Liquid Membranes Inorganic Metallic Ceramic Other Alternative M	Froduct Cementlike Materials Bicarbonates Mass Transfer	for biofuel production) Greenhouse (higher plant) Chemical Electrofuels Polymers	
	Rectisol Purisol Other Chemical Amines MEA Other Amines Ammonia Caustics Amino Acid Salts Ionic Liquids Catalysts with Chemical	Chemical (T5A) Metal Organic Frameworks (MOFs) Supported Amines Metal Oxides (chemical looping) Mixed Abs/Ads Solid-Supported	Selective Site selective Liquid Membranes Metallic Ceramic Other Alternative A IVIEmbrane	Froduct Comentlike Matai Bicarbonates Mass Transfer Other	for biofuel production) Greenhouse (higher plant) Chemical Electrofuels Polymers Primarily Pr	recombust

The CO₂ capture technology document is being adapted for inclusion on the PCOR Partnership Partners-Only Decision Support System. Interactive features will allow the user to access:

- Summaries of the three capture platforms (pre-, during, and postcombustion)
- Summaries of the various technology types ٠ (adsorption, absorption, membrane, cryogenic, etc.)
- Specific technology information
 - Description
 - Development status
 - Developer name(s)
 - Process schematic
 - References


DOE NETL Program Goals

U.S. Department of Energy (DOE) National Energy Technology Lab (NETL) technology goal: "To develop, by 2020, fossil fuel conversion systems that offer 90% CO₂ capture with 99% storage permanence at less than a 10%–35% increase in the cost of energy services."

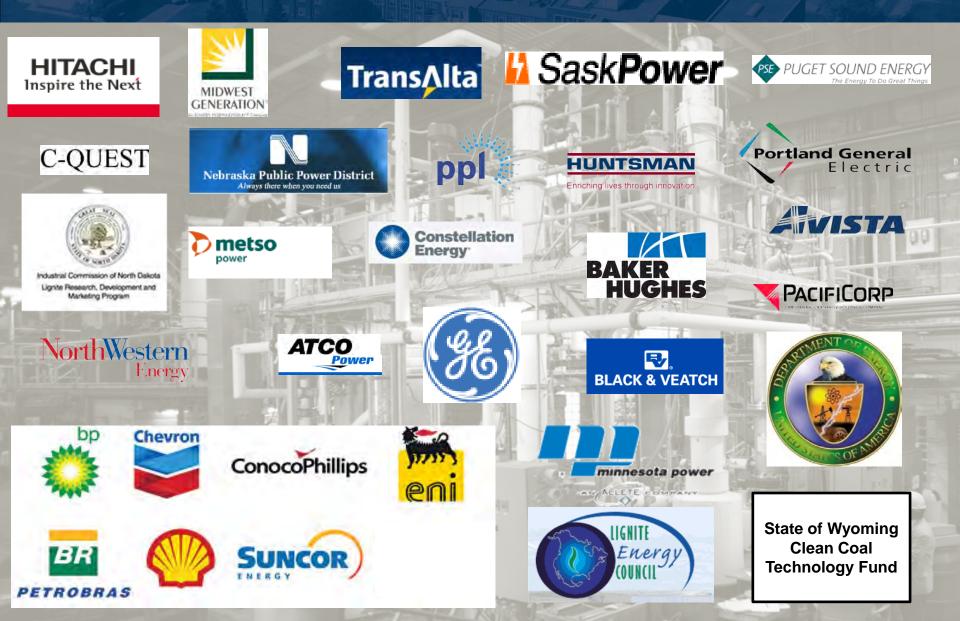
CO₂ Capture Technology Status

COST REDUCTION BENEFITS

Figure 2-13. DOE/NETL CO., Capture Technology Development

PCO₂C Summary

00

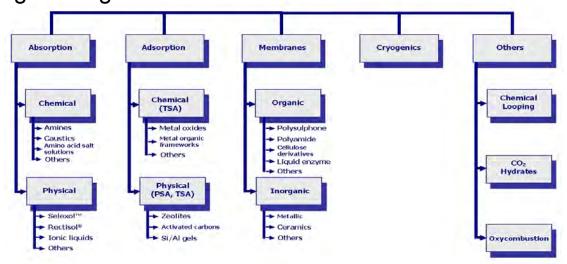

티티티티

Advancing the state of CO_2 capture by evaluating and developing those technologies that are nearest to commercial viability for utility applications.

- Multiple-phase program.
- Includes funding from private sector sponsors (27), the North Dakota Industrial Commission, and the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL).
- Identify technology challenges and develop strategies for cost-effective and efficient implementation at the power utility scale.

PCO₂C Sponsors

STA GAL

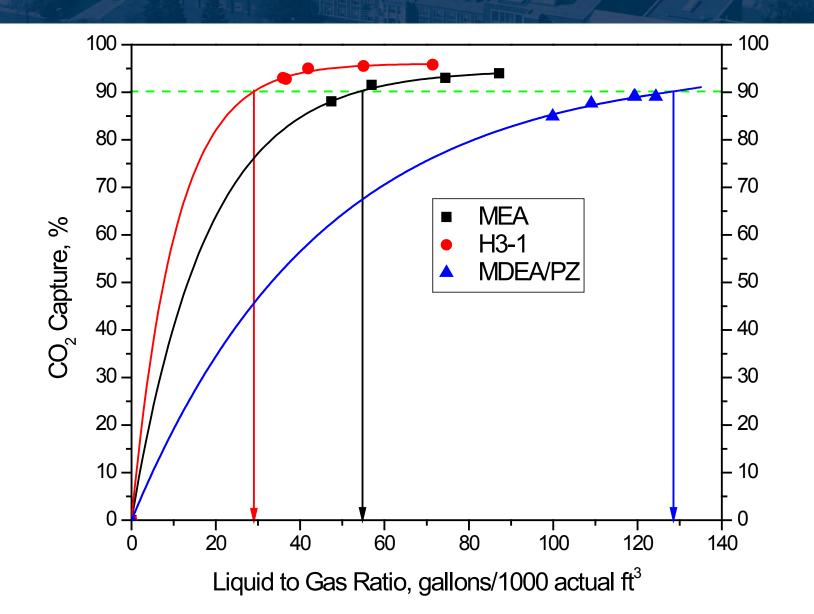


Summary of CO₂ Capture Technologies

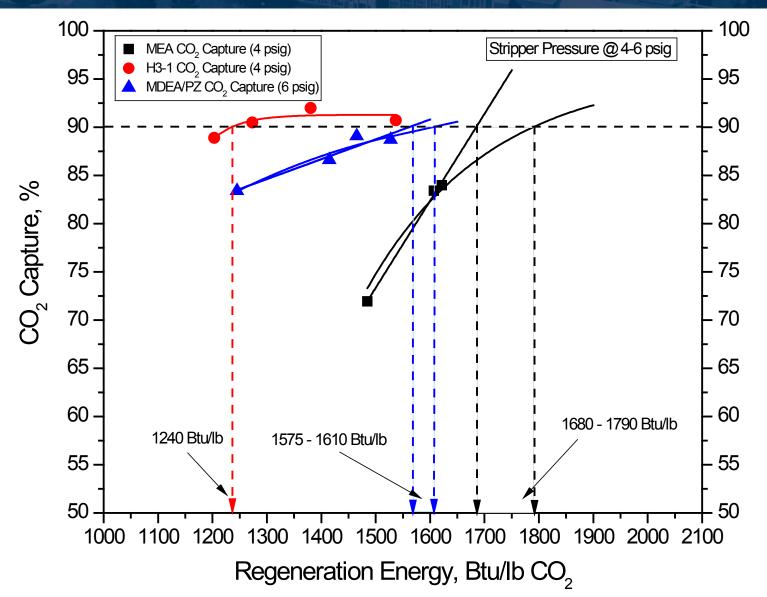
Technologies Under Evaluation

- Solvents
 - Monoethanolamine (MEA) Phase 1
 - Hitachi H3-1 Phase 1 & 2
 - Methyldiethanolamine (MDEA)– piperazine – Phase 1
 - Cansolv Phase 2
 - Huntsman Phase 2
 - ION Engineering Phase 2

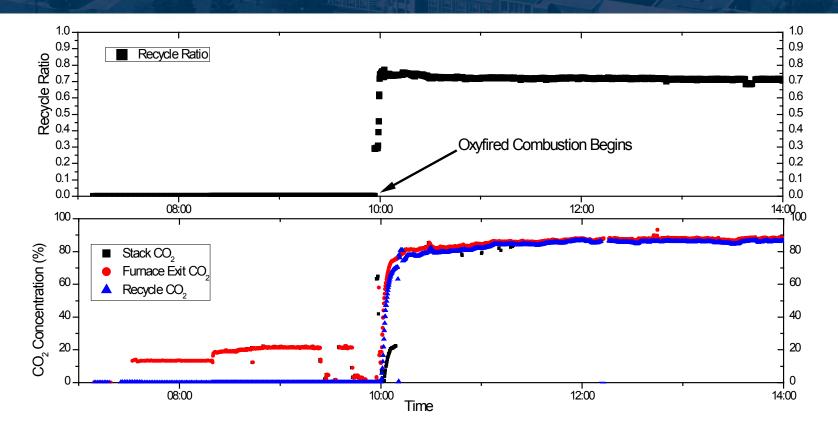
- Oxy-Combustion P1 & 2
- Solid Sorbents Phase 2
 - NETL
- Other
 - C-Quest (slurry based) Phase 2
- Solvent Additives
 - Baker Hughes Phase 1
 - Huntsman Phase 1 & 2
 - Advanced Solvent Contactor (NSG)



EERC... The International Center for Applied Energy Technology®

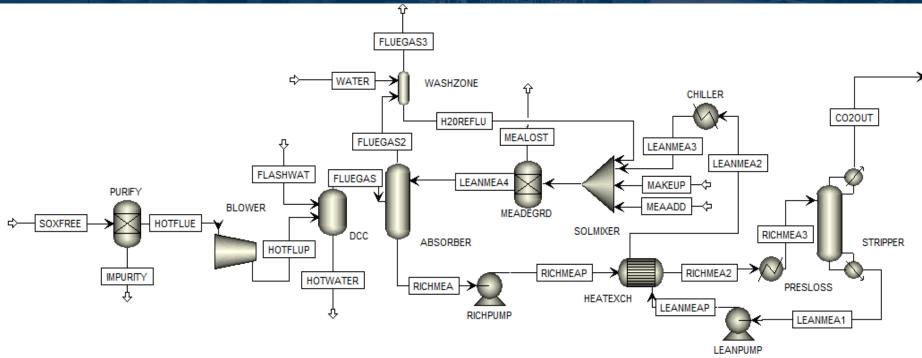


CO₂ Capture vs. Liquid-to-Gas Ratio

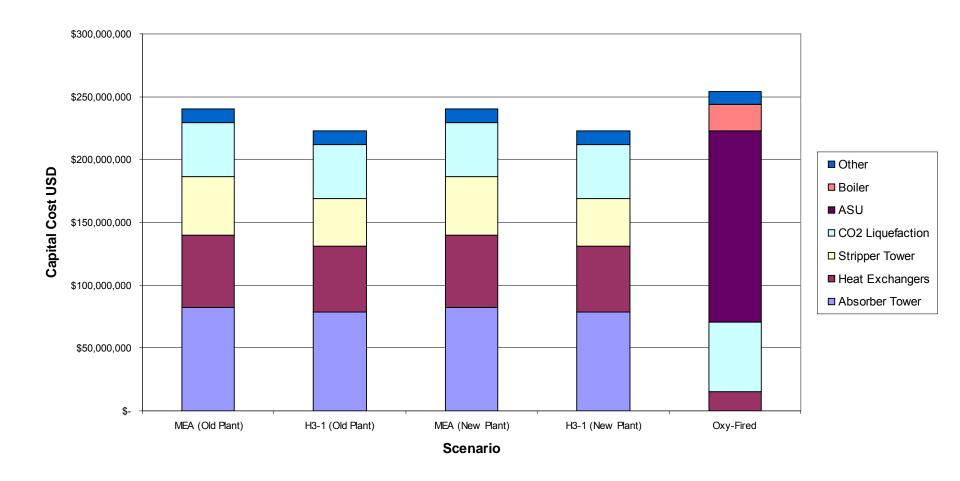


17

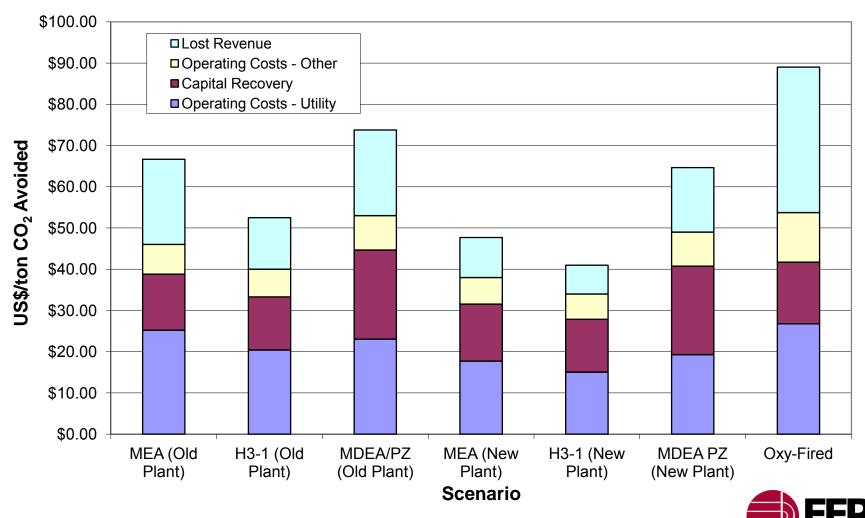
CO₂ Capture vs. Regeneration Energy


Example of CO₂ Concentration

Flue Gas CO₂ Concentration from Run 1046 Using Paintearth Subbituminous


500-MW Aspen Plus[®] Model for CO₂ Capture

- 90% of CO₂ is removed from flue gas in absorber tower by MEA solvent.
- MEA losses from degradation are estimated from pilot-scale data.
- Wash zone minimizes MEA evaporation losses in absorber tower.


Capital Cost Comparison

EERC... The International Center for Applied Energy Technology®

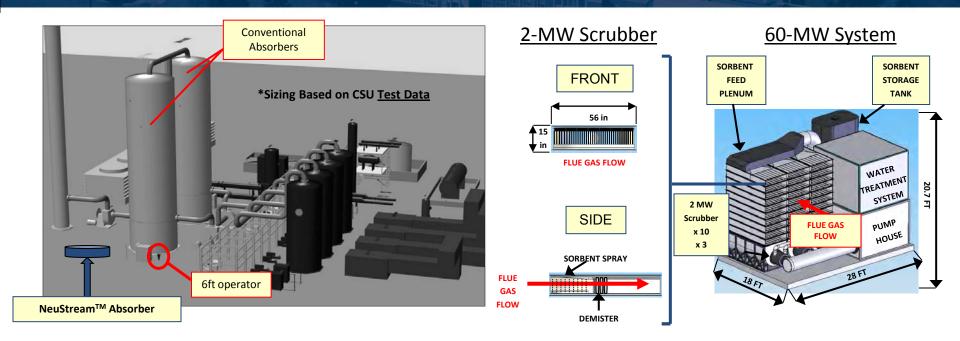
Cost of CO₂ Avoided

EERC... The International Center for Applied Energy Technology®

Energy & Environmental Research Center® Putting Research into Practice

Development Focus Areas for CO₂ Capture Implementation in Coal-Fired Power Plants

- Scale-up
- Energy penalty
 - 20% to 30% less power output
- Cost
 - Current costs are \$40 to \$80 per ton of CO_2 (80% ICOE).
 - Very capital intensive (\$1500 to \$2000/kW).
- Contaminants
- Resource availability and sector readiness
 - Supply of solvents or sorbents will be limited.
 - Manufacture of air separation units (ASUs) and other large equipment will be a handcuff to implementation.
- Regulatory framework
 - Lots of unknowns and liability issues.



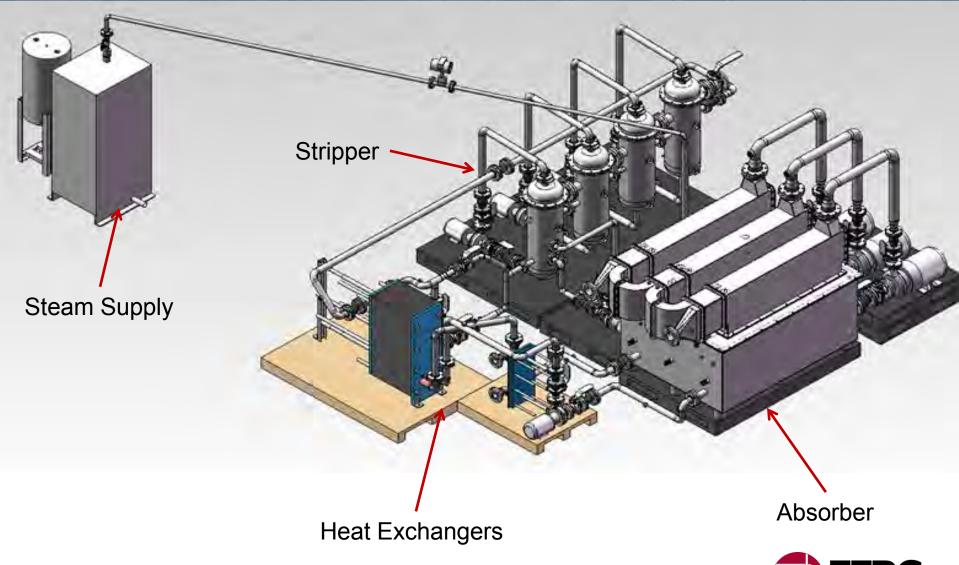
Evaluation of Novel Technologies for CO₂ Capture

- Neumann Systems Group's NeuStream-C[™] system.
- Pilot-scale evaluation to determine the performance and economics of the NeuStream-C system.
- The end result of the program is focused on the development of lower-cost and more effective capture technologies and their integration into a total system that provides substantial economic and environmental benefits.

NeuStream Capture and Processing Systems

Up to 90% Smaller

Modular Design

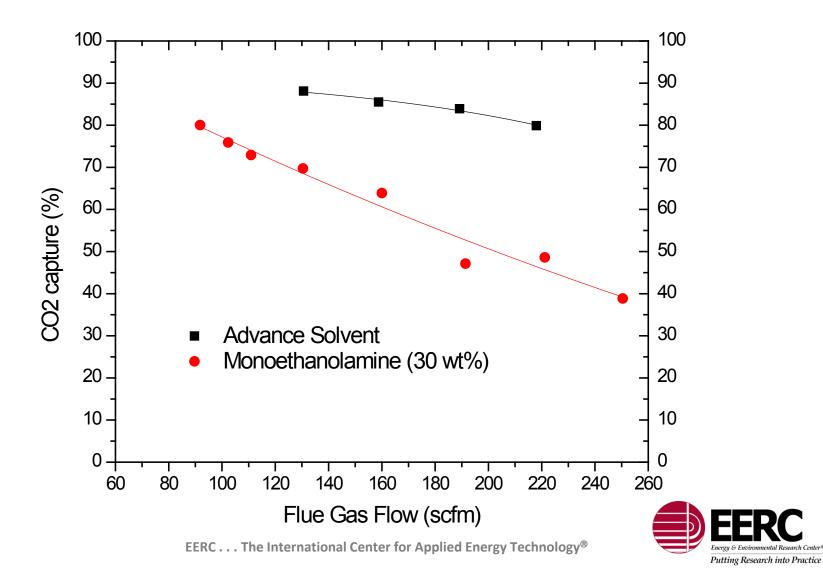

Up to 50% Lower CapEx Up to 40% Lower OpEx

Through NSG Mechanical Advancement Useful with Variety of Chemistries

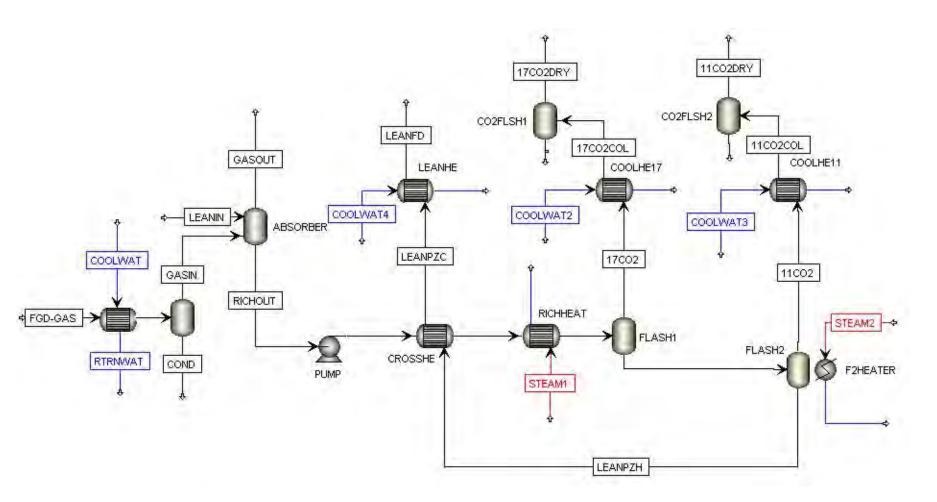
EERC... The International Center for Applied Energy Technology®

Current System Design

Energy & Environmental Research Center® Putting Research into Practice


NeuStream-C System

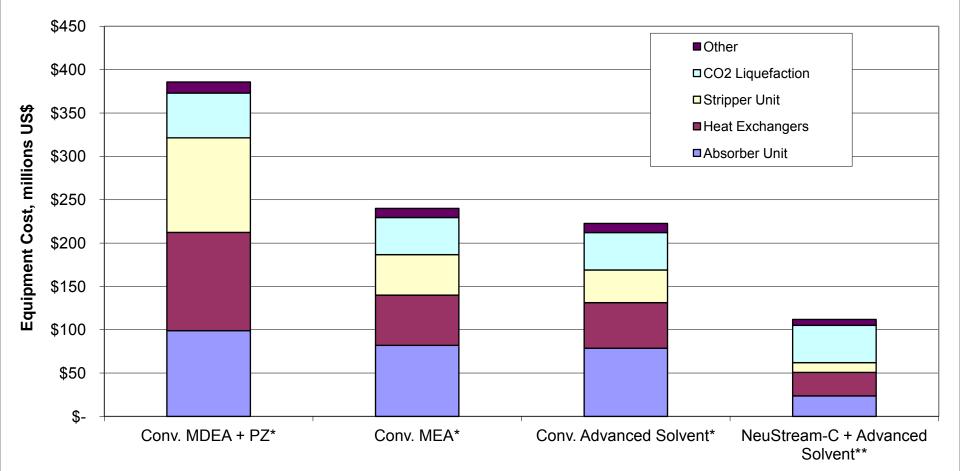
Combustor


Conventional Absorber System

99

Preliminary Capture Results

Preliminary Modeling Results



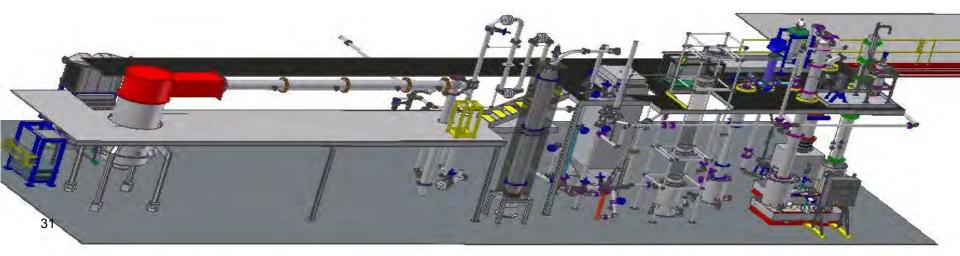
an I L

EERC... The International Center for Applied Energy Technology®

Capital Cost Comparison

* Based on PCO_2C Phase I results scaled up to a 500-MWe plant.

** Based on preliminary data scaled up to a 550-MWe plant.


Scenario

Partnership for CO₂ Capture: Phase II

Pilot-scale testing of CO₂ capture technologies

Over 10 test campaigns evaluating eight different technologies

- Several technologies will be further evaluated, and new novel approaches will be tested.
 - Solvents: Huntsman, Hitachi, CanSolv (Shell), and Advanced Systems (NSG Contactor)
 - Solid sorbents (NETL)
 - Oxy-fired combustion (completed)
 - Other solvent-based technologies: ION Engineering
 - Slurry-based approach (C-Quest)

Contact Information

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, North Dakota 58202-9018

World Wide Web: **www.undeerc.org** Telephone No. (701) 777-5065 Fax No. (701) 777-5181

Mike Holmes, Deputy Associate Director for Research 701-777-5276 mholmes@undeerc.org

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

