Carbon Sequestration leadership forum

CSLF-P-2013-03 16 October 2013

POLICY GROUP

Key Messages and Recommendations from the CSLF Technical Group

Background

At the September 2011 CSLF Ministerial Meeting in Beijing, the Technical Group approved a new multi-year Action Plan to identify priorities and provide a structure and framework for conducting Technical Group efforts through 2016. Twelve individual actions were identified, and Task Forces were formed to address four of these twelve actions. This paper is a summary of key messages and recommendations from the following three Technical Group Task Forces:

- Technology Opportunities and Gaps Task Force
- Technical Challenges for Conversion of CO₂-EOR to CCS Task Force
- CO₂ Utilization Options Task Force

Action Requested

The Policy Group is requested to review the messages and recommendations from the Technical Group.

Carbon Sequestration leadership forum

CSLF-P-2013-03 16 October 2013 www.c/lforum.org

Key Messages and Recommendations from the CSLF Technical Group

Prepared by the CSLF Technical Group Executive Committee

CCS Technology Opportunities and Gaps

- At a high level there are no major technology gaps or impediments to large-scale CCS deployment; the technology is available and can be effectively deployed.
- The focus of the technology development is now on driving down costs, improving operational and monitoring performance, and contributing to better regulatory frameworks for CCS.
- Current commercially available capture technologies will evolve by implementing more projects. This typical "learning by doing" phenomenon is common with many technologies and is already happening in CCS.
- For the next generation of capture technologies, that promise much lower costs than those currently available, more attention is needed. Investment in the early stages of development has been significant with a number of promising emerging technologies. However, with little or no market for CCS (e.g., CO₂ price or emissions reduction mandate), the market pull for this next crop of technologies is weak. Getting next-generation lower-cost technologies into large scale pilots and demonstration operations is important and requires governments to act to ensure that CO₂ capture at much lower costs is available for deployment by 2030 and beyond.
- Technologies for capturing CO₂ from natural gas combustion should be a priority, as low-cost shale gas will encourage more gas combustion driven both by market costs and by an increasing need to reduce CO₂ emissions.
- Pipeline transporting of CO₂ is a mature technology, but more experience is need in planning and designing large scale transport hubs managing a diverse supply of CO₂ with different impurity concentrations. Large scale transport of CO₂ by ship offers promise and needs to be demonstrated as scale.
- On storage, the significant body of knowledge from the oil and gas industry combined with what is now 10-15 years of R&D on the behaviour of CO₂ in deep rock formations underpins a strong consensus that safe CO₂ storage is possible today.
- The lead times from initiating exploration through to approvals and construction of storage sites will often be 10-15 years. The rate at which exploration is incentivised to start will have a profound impact on the degree to which CCS can contribute to reaching 2050 global CO₂ reduction targets. This will increase the ability to deploy CCS more rapidly and will in turn affect the rate of technology improvement. There is a strong recommendation to start or incentivize more exploration for storage.

- Monitoring, measurement verification (MMV) for stored CO₂ continues to progress
 well. Low cost, continuous, high-resolution subsurface monitoring is being refined
 and may be valuable in some situations. An important new front is developing MMV
 technologies and strategies for MMV for storage in offshore environments.
- It is recommended that Governments continue to look to support and incentivise international technology collaboration and researcher exchange to spark faster developments and the diffusion of new CCS technologies, particularly in the fields of capture and monitoring.

Converting CO₂-EOR Operations to CCS

- Enhanced Oil Recovery (EOR) is the most near-term utilization option that has broad commercial deployment opportunities.
- There is sufficient operational and regulatory experience for this technology to be considered as being mature, with an associated CO₂ storage rate of the purchased CO₂ greater than 90%.
- The main reason CO₂-EOR is not applied on a large scale outside west Texas in the United States is the unavailability of high-purity CO₂ in the amounts and at the cost needed for this technology to be deployed on a large scale.
- The absence of infrastructure to both capture the CO₂ and transport it from CO₂ sources to oil fields suitable for CO₂-EOR is also a key reason for the lack of large scale deployment of CO₂-EOR.
- There are a number of commonalities between CO₂-EOR and pure CO₂ storage operations, both at the operational and regulatory levels, which create a good basis for transitioning from CO₂-EOR to CO₂ storage in oil fields.
- There are no specific technological barriers or challenges *per se* in transitioning and converting a pure CO₂-EOR operation into a CO₂ storage operation. The main differences between the two types of operations stem from legal, regulatory and economic differences between the two.
- A challenge for CO₂-EOR operations which may, in the future, convert to CO₂ storage operations is the lack of baseline data for monitoring.
- In order to facilitate the transition of a pure CO₂-EOR operation to CO₂ storage, operators and policy makers have to address a series of legal, regulatory and economic issues in the absence of which this transition can not take place. These should include:
 - 1. Clarification of the policy and regulatory framework for CO₂ storage in oil reservoirs, including incidental and transitioned storage CO₂-EOR operations.
 - 2. Clarification if CO₂-EOR operations transitioning to CO₂ storage operations should be tenured and permitted under mineral/oil & gas legislation or under CO₂ storage legislation.
 - 3. Clarification of any long-term liability for CO₂ storage in CO₂-EOR operations that have transitioned to CO₂ storage, notwithstanding the CO₂ stored during the previous phase of pure CO₂-EOR.

- 4. Clarification of the monitoring and well status requirements for oil and gas reservoirs, particularly for CO₂-EOR, including baseline conditions for CO₂ storage.
- 5. Addressing the issue of jurisdictional responsibility for pure CO₂ storage in oil and gas reservoirs, both in regard to national-subnational jurisdiction in federal countries, and to organizational jurisdiction (environment versus development ministries/departments).

CO₂ Utilization Options

- Besides utilization in CO₂-EOR operations, there is a wide range of CO₂ utilization options available which can serve as a mechanism for deployment and commercialization of carbon capture and storage (CCS) by providing an economic return for the capture and utilization of CO₂.
- Non-EOR CO₂ utilization options are at varying degrees of commercial readiness and technical maturity.
- For commercially and technologically mature options such as urea production and utilization in greenhouses, efforts should be on demonstration projects and on the use of non-traditional feedstocks (such as coal) or 'polygeneration' concepts (such as those based on integrated gasification combined cycle (IGCC) concepts). This can help facilitate CCS deployment by diversifying the product mix and providing a mechanism for return on investment.
- Efforts that are focused on hydrocarbon recovery other than EOR, such as CO₂ for enhanced gas recovery (via methane displacement) or CO₂ utilization as a fracturing fluid, should focus on field tests to validate existing technologies and capabilities, and to understand the dynamics of CO₂ interactions in the reservoir.
- Efforts that are in early R&D or pilot-scale stages, such as algal routes to fuels, aggregate/secondary construction materials (SCM) production, and enhanced geothermal systems, should focus on: addressing key techno-economic challenges; independent tests to verify the performance (e.g., less energy requirements with CO₂ utilization to produce SCM and building materials) of these products compared to technical requirements and standards; and support of small, pilot-scale tests of first generation technologies and designs that could help provide initial data on engineering and process challenges of these options.
- More detailed technical, economic, and environmental analyses should be conducted
 to better quantify the potential impacts and economic potential of CO₂ utilization
 technologies and to clarify how R&D could potentially expand the market for these
 utilization options (e.g., in enhanced gas recovery) and improve the economic and
 environmental performance of the system.