Southeast Regional Carbon Sequestration Partnership (SECARB) Phase III Anthropogenic Test and Plant Barry Carbon Dioxide Capture and Storage Project

Presented to:

CSLF Technical Group Meeting Washington, D.C., USA 05 November 2013

Presented by:

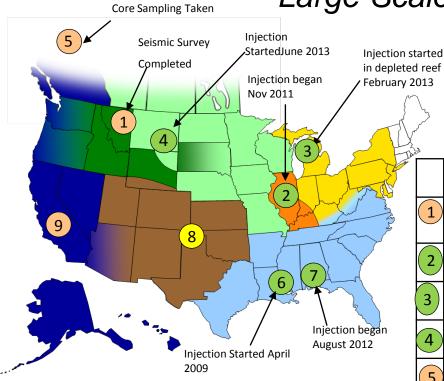
Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board

Acknowledgements

- This material is based upon work supported by the U.S.
 Department of Energy National Energy Technology Laboratory.
- Cost share and research support provided by the Southeast Regional Carbon Sequestration (SECARB) Carbon Management Partners.
- Anthropogenic Test CO₂ Capture Unit funded separately by Southern Company and partners.

Presentation Outline

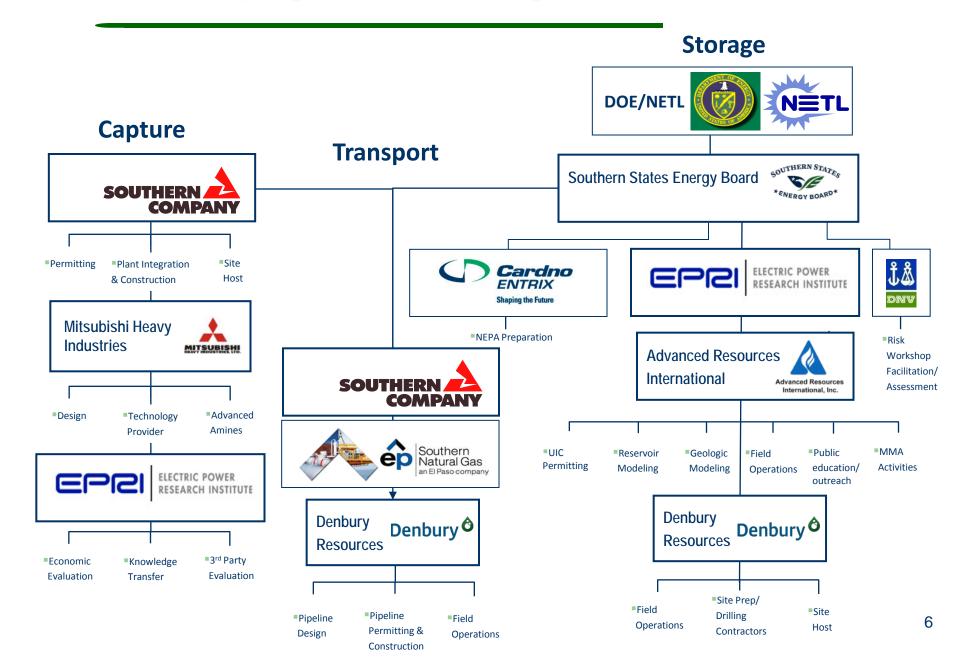
- Regional Carbon Sequestration Partnerships
 - Seven Regional Entities
 - SECARB Phase III Projects
- SECARB Anthropogenic Test
 - Plant Barry Capture Unit
 - Dedicated CO2 Pipeline
 - Injection & Monitoring Systems
 - Risk Management
 - Public Outreach and Education



RCSP Phase III: Development Phase

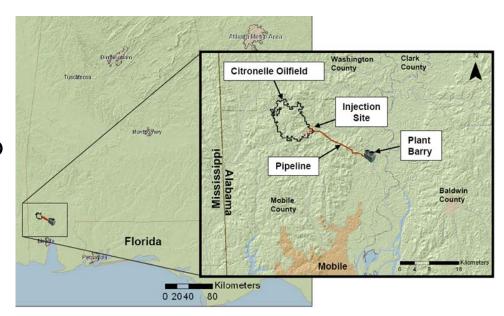
Large-Scale Geologic Tests

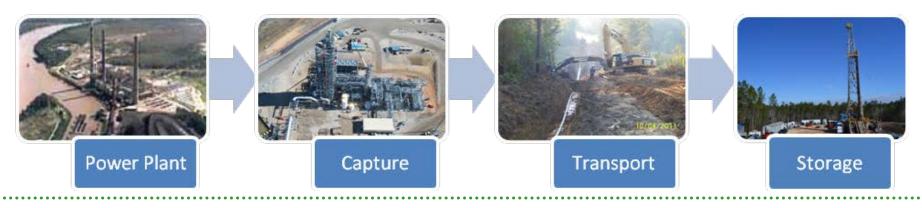
- Injection Ongoing
- 2013 Injection Scheduled
- Injection Scheduled 2013-2015


Note: Some locations presented on map may differ from final injection location

- ✓ Large-volume tests
- ✓ Four Partnerships currently injecting CO₂
- ✓ Remaining injections scheduled 2013-2015

	Partnership	Geologic Province	Target Injection Volume (tonnes)		
1	Big Sky	Nugget Sandstone	1,000,000		
2	MGSC	Illinois Basin- Mt. Simon Sandstone	1,000,000		
3	MRCSP	Michigan Basin- Niagaran Reef	1,000,000		
4	PCOR	Powder River Basin- Bell Creek Field	1,500,000		
5	PCOK	Horn River Basin- Carbonates	2,000,000		
6	SECARB	Gulf Coast – Cranfield Field- Tuscaloosa Formation	3,400,000		
7		Gulf Coast – Paluxy Formation	250,000		
8	SWP	Regional CCUS Opportunity	1,000,000		
9	WESTCARB	Regional Characterization			




Anthropogenic Test Organization Chart

SECARB Phase III Anthropogenic Test

- Carbon capture from Plant Barry equivalent to 25MW.
- 12 mile CO₂ pipeline constructed by Denbury Resources.
- CO₂ injection into ~9.400 ft. deep saline formation (Paluxy)
- 100,000 metric tons injected (29 October 2013)
- Monitoring CO₂ during injection and 3 years post-injection.

Plant Barry Capture Unit: 25MW, 500 TPD

NEPA/Permitting at SECARB's Integrated Project

- UIC Class V permit application
 - Submitted to Alabama Dept. of Env. Quality December 2010
 - Revise for EPA August 2011

- Mitigation Requirements
 - 3 mi of wetlands (wetland mitigation planned)
 - 23 gopher tortoise burrows
- Consultation with State and Federal Agencies
- Public Outreach and Education

SHPO Survey, April 14, 2010

NEPA Finding of No Significant Impact (FONSI)

Directional drilling required to avoid disturbing Gopher Tortoise habitat

CO₂ Pipeline and Measurement Design

- Applicable regulatory standard:
 US Depart of Transportation, 49
 CFR Part 195 Transportation
 of Hazardous Liquids by Pipeline
- 4-inch (10 cm) pipe diameter carbon steel pipe
- Normal operating pressure:
 1,500 psig (10.3 MPa) maximum
- Buried average of 5 ft (1.5 m) with surface re-vegetation and erosion control

Handling pipe for horizontal directional drill

CO₂ Pipeline Overview

- Typical Pipeline/Injection Operations
 - 1,448 psi and 90°F at the transfer station
 - Rate: 9.64MMcfd (~480 tonnes/day) at 1,314 psi (wellhead) 63°F.
- Typical CO₂ Purity

Component	%
N_2	0.011
O ₂	0.010
CO ₂	99.979

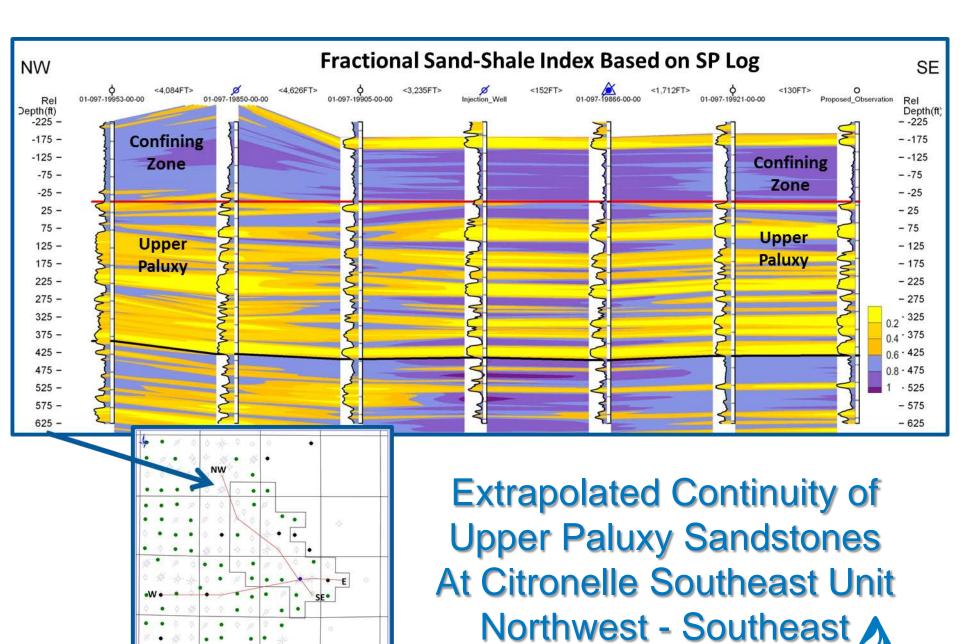
Detailed Characterization of the Injection Site

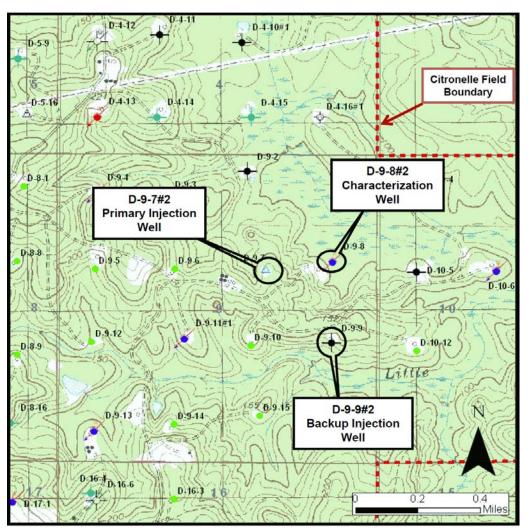
Characterization Well D9-8 #2 at Citronelle Field - Drilled (Dec. 2010/Jan. 2011)

Selecting a Good Storage Formation

System	Series	Stratigraphic Unit	Major Sub Units		Potential Reservoirs and Confining Zones	
	Plio- Pliocene		Citronelle Formation		Freshwater Aquifer	
	Miocene	Undifferentiated			Freshwater Aquifer	
	<u>o</u>		Chickasawhay Fm.		Base of USDW	
[ertiary	Oligocene	Vicksburg Group Bucatunna Clay		Local Confining Unit		
~	m	Jackson Group			Minor Saline Reservoir	
	Eocene	Claiborne Group	Talahatta Fm.		Saline Reservoir	
	le	Wilcox Group	Hato	hetigbee Sand		
	Pa		Bashi Marl Salt Mountain LS Porters Creek Clay		Saline Reservoir	ľ
	Paleocene					
	ene	Midway Group			Confining Unit	
	Upper	Selma Group			Confining Unit	
		Eutaw Formation			Minor Saline Reservoir	
		Tuscaloosa Group	Upper Tusc.		Minor Saline Reservoir	
			Mid. Tusc	Marine Shale	Confining Unit	
					Outing December	١.
			Lower Tusc.	Massive sand	Saline Reservoir	
0		Washita-	Dantzler sand		Saline Reservoir	
re		Fredericksburg	6	Basal Shale	Primary Confining Unit	
Cretaceous		Paluxy Formation	'Upper' 'Middle' 'Lower'		Injection Zone	
	Lower	Mooringsport Formation			Confining Unit	
	ï	Ferry Lake Anhydrite			Confining Unit	
		Donovan Sand	Rodessa Fm.	Upper'	Oil Reservoir	
			'Middle'		Minor Saline Reservoir	
				'Lower'	Oil Reservoir	

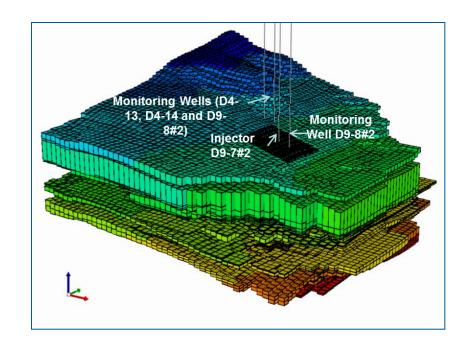
- Proven four-way closure at Citronelle Dome
- Injection site located within Citronelle oilfield where existing well logs are available
- Deep injection interval (Paluxy Form. at 9,400 feet)
- Numerous confining units
- Base of USDWs ~1,400 feet
- Existing wells cemented through primary confining unit
- No evidence of faulting or fracturing (2D)





SECARB Citronelle: MVA Sample Locations

- One (1) Injector (D-9-7 #2)
- Two (2) deep Observation wells (D-9-8 #2 & D-9-9 #2)
- Two (2) in-zone Monitoring wells (D-4-13 & D-4-14)
- One (1) PNC logging well (D-9-11)
- Twelve (12) soil flux monitoring stations



Geology Summary for Simulation

- Injecting into Paluxy @ 9,400 feet
- >260 net feet of "clean" sand
- Average porosity of 19% (ranges from 14% to 24%)
- Average permeability of 300 md (ranges from 30md to 1,000 md)

SECARB Citronelle: Top ranked risks

- Initially June 2011 the top ranked risks related to:
 - Permitting 30, 31
 - Injectivity and containment 8, 9, 10, 11
 - Modelling and monitoring 14, 32
 - Reliable operations 1, 23, 24, 38,
 - Pipeline and wells 3, 21, 34
- In January 2012, Class V permit had been granted and drilling of monitoring wells and pipeline construction had been completed. Top ranked remaining risks related to:
 - Authorization to inject 31
 - Containment 8, 9, 10 (low likelihood, but high consequence)
 - Reliability of operations 23, 38
 - Pipeline or casing leak 21, 29
- In May 2013 project had been operating for 9 months. Top remaining risks related to
 - Possible loss of containment 8, 9, 10
 - Reliability of operations 23, 41
 - Post-injection MVA / Authorization for closure 52

Public Outreach and Education

Public Outreach Plan using DOE Best Practices Model

 Active Community Engagement, Open House Meetings and Tours

- Communicating Project Status
 - Local, Regional, International Outreach
 - Annual SECARB Stakeholders' Briefing
 - Dedicated Website
- Knowledge Sharing

Facebook Page: facebook.com/SECARB

Twitter Feeds: @SECARB1

