Southeast Regional Carbon Sequestration Partnership (SECARB) Phase III Anthropogenic Test and Plant Barry Carbon Dioxide Capture and Storage Demonstration

Presented to: CSLF Projects Interaction & Review Team Washington, D.C., USA 04 November 2013

Presented by:

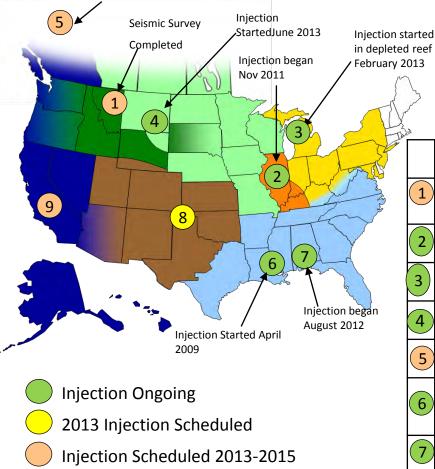
Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board

Acknowledgements

- This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.
- Cost share and research support provided by the Southeast Regional Carbon Sequestration (SECARB) Carbon Management Partners.
- Anthropogenic Test CO₂ Capture Unit funded separately by Southern Company and partners.

Presentation Outline

- Regional Carbon Sequestration Partnerships
 - Seven Regional Entities
 - SECARB Phase III Projects
- SECARB Anthropogenic Test
 - Plant Barry Capture Unit
 - Dedicated CO2 Pipeline
 - Injection & Monitoring Systems
- Project Integration & Risk Management
 - Key Integration Questions
 - Risk Management & Assessment
 - Public Outreach and Education



RCSP Phase III: Development Phase Large-Scale Geologic Tests

Note: Some locations presented on map may differ from final injection location

✓ Large-volume tests

✓ Four Partnerships currently injecting CO₂

✓ Remaining injections scheduled 2013-2015

	Partnership	Geologic Province	Target Injection Volume (tonnes)			
1	Big Sky	Nugget Sandstone	1,000,000			
2	MGSC	Illinois Basin- Mt. Simon Sandstone	1,000,000			
3	MRCSP	Michigan Basin- Niagaran Reef	1,000,000			
4	PCOR	Powder River Basin- Bell Creek Field	1,500,000			
5	TCOR	Horn River Basin- Carbonates	2,000,000			
6	SECARB	Gulf Coast – Cranfield Field- Tuscaloosa Formation	3,400,000			
7		Gulf Coast – Paluxy Formation	250,000			
8	SWP	Regional CCUS Opportunity	1,000,000			
9	WESTCARB	Regional Characterization				

SECARB Phase III

ELECTRIC POWER RESEARCH INSTITUTE

Anthropogenic Test

Capture: Alabama Power 's Plant Barry, Bucks, Alabama

Transportation: Denbury

Geo Storage: Denbury's Citronelle Field, Citronelle, Alabama

Early Test

Denbury Resources' Cranfield Field Near Natchez, Mississippi

CO₂ Source: Denbury

CO₂ Transportation: Denbury

Saline MVA: GCCC

UTHERN STAT.

ENERGY BOA

Gulf

Coast Carbon Center

SECARB's Anthropogenic Test Citronelle, Alabama

CSLF Gaps Analysis: SECARB Anthropogenic Test

GENERAL

Project Scale	
Demonstration	~

CAPTURE TECHNOLOGIES

Capture Type				
Post-combustion capture				
Technology				
Advance the capture technology	~			
Advance purification and compression technology				

TRANSPORT

General

Pipeline Transport

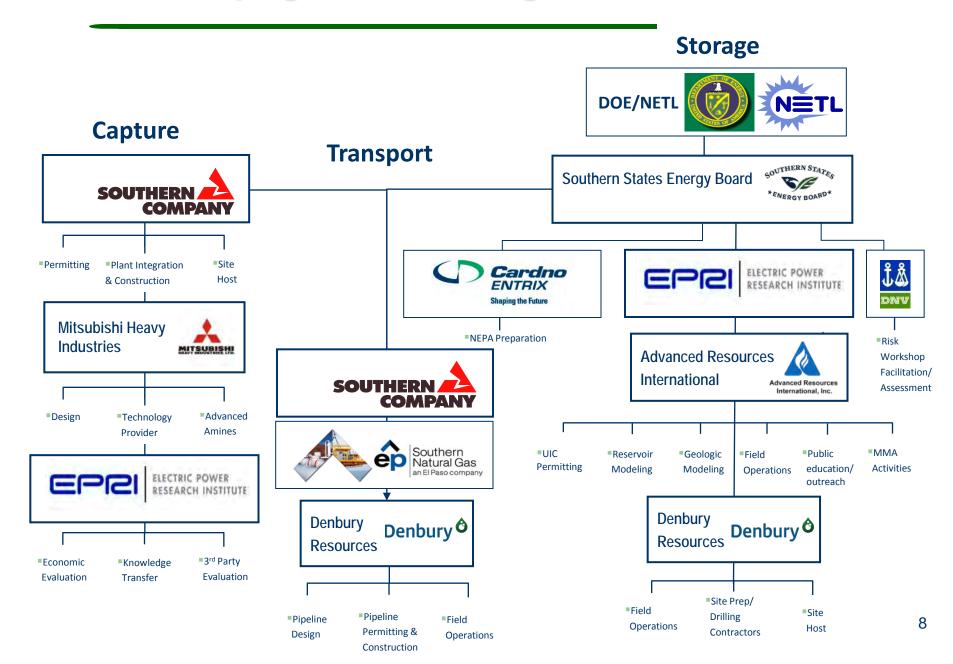
STORAGE AND MONITORING

Storage Complex Type	
Saline formations	~
Storage complex characterization	
CO ₂ -water-rock (or coal) interactions	~
Impact of the quality of CO_2 on storage	~
Improved modelling of complex	~
Effects of CO ₂ rock/water interactions and induced changes in temperature, pressure and stress on permeability, injectivity, migration, trapping and capacity.	~
Monitoring the storage complex including risk assessment	
Development of new or improved CO ₂ monitoring technologies	~
Improve baseline monitoring and distinguish between natural and anthropogenic CO ₂	~
Development of risk minimization/mitigation methods and strategies, including leakage	~
Improve well integrity, well abandonment practices, and/or remediation of existing wells	~

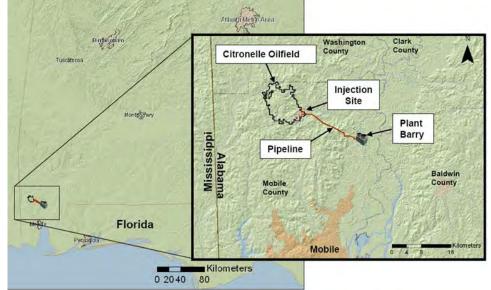
 Project goals/objectives aligned with overall aims and mission of

CSLF

- Improving CCS technologies and reducing related costs through project demonstrations, information exchange, and collaboration
 - Supports CSLF Technology Roadmap's Summary of Key Technology Needs and Gaps



~



Anthropogenic Test Organization Chart

SECARB Phase III Anthropogenic Test

- Carbon capture from Plant Barry equivalent to 25MW.
- 12 mile CO₂ pipeline constructed by Denbury Resources.
- CO₂ injection into ~9.400 ft. deep saline formation (Paluxy)
- 100,000 metric tons injected (29 October 2013)
- Monitoring CO₂ during injection and 3 years post-injection.

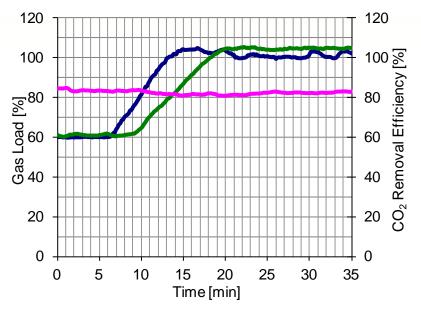
CO₂ Capture Demo

- Southern Company's CCS Commercialization Program Goals
 - Deploy integrated CCS demo to understand the integration of capture plant and injection field
 - Advance capture technology performance to preserve the new and retrofit PC coal option
 - "Learn by doing" to create competitive advantage and maintain leadership position in technology development
- The Plant Barry (Alabama Power) 25MW Demo
 - Southern Company Services & Mitsubishi Heavy Industries collaboration with partners
 - KM-CDR capture technology (500 TPD)

Denbury

10

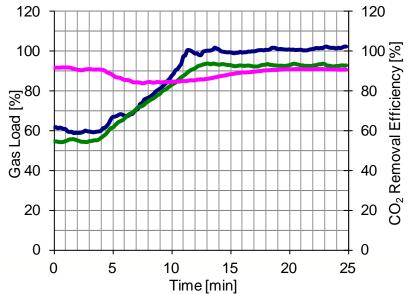
Plant Barry Capture Unit: 25MW, 500 TPD


Plant Performance

Flue gas CO₂ concentration is dependent on boiler load
KM-CDR process can be adjusted to achieve the desired CO₂ capture rate and production rate with varying boiler conditions

		Base Case	High Energy Efficiency Case	High Loading Case
	Flue Gas Flow Rate [Nm ³ /hr]	109,000	112,000	116,000
Flue Gas Condition	CO ₂ Concentration at the Quencher Inlet [vol.% (w)]	10.8	10.5	10.8
	CO ₂ Capture Rate [TPD]	505	509	543
Operation	CO ₂ Removed Efficiency [%]	91	91	91
Results	Steam Consumption [tonne-steam/tonne-CO ₂]	0.98	0.95	1.02

SOUTHERN


Actual load following data in 2 modes

CO₂ compliance scheme

- •Demand dictated by additional boiler load (leads to more flue gas flow)
- •Ramp of ~5%/minute
- •Small dip in removal (5%), but recovery to 90% within 10 minutes

- CO₂ Production Scheme
- •Demand dictated by additional CO₂ product requirement
- •Ramp of ~5%/minute
- •Very stable removal rate
 - •Capture Rate •CO₂ Flow •Flue Gas flow

SOUTHERN

NEPA/Permitting at SECARB's Integrated Project

- UIC Class V permit application
 - Submitted to Alabama Dept. of Env. Quality December 2010
 - Updated March 2011
 - Revise for EPA August 2011
- Environmental Assessment (EA)
 - Mitigation
 - 3 mi of wetlands (wetland mitigation planned)
 - 23 gopher tortoise burrows
 - Consultation
 - Fish & Wildlife Service for the gopher tortoise
 - Corp of Engineers for wetlands
 - SHPO (State cultural/archeological assets)
 - Storm-water construction (BMPs)

NEPA Finding of No Significant Impact (FONSI)

SHPO Survey, April 14, 2010

Denbury ^C

15

Directional drilling required to avoid disturbing Gopher Tortoise habitat

CO₂ Pipeline and Measurement Design

- Applicable regulatory standard: US Depart of Transportation, 49 CFR Part 195 — Transportation of Hazardous Liquids by Pipeline
- 4-inch (10 cm) pipe diameter carbon steel pipe
- Normal operating pressure: 1,500 psig (10.3 MPa) maximum
- Buried average of 5 ft (1.5 m) with surface re-vegetation and erosion control

Handling pipe for horizontal directional drill

CO₂ Pipeline Overview

- Typical Pipeline/Injection Operations
 - 1,448 psi and 90°F at the transfer station
 - Rate: 9.64MMcfd (~480 tonnes/day) at 1,314 psi (wellhead) 63^oF.
- Typical CO₂ Purity

Component	%
N ₂	0.011
O ₂	0.010
CO ₂	99.979

18

Detailed Characterization of the Injection Site

Characterization Well D9-8 #2 at Citronelle Field - Drilled (Dec. 2010/Jan. 2011)

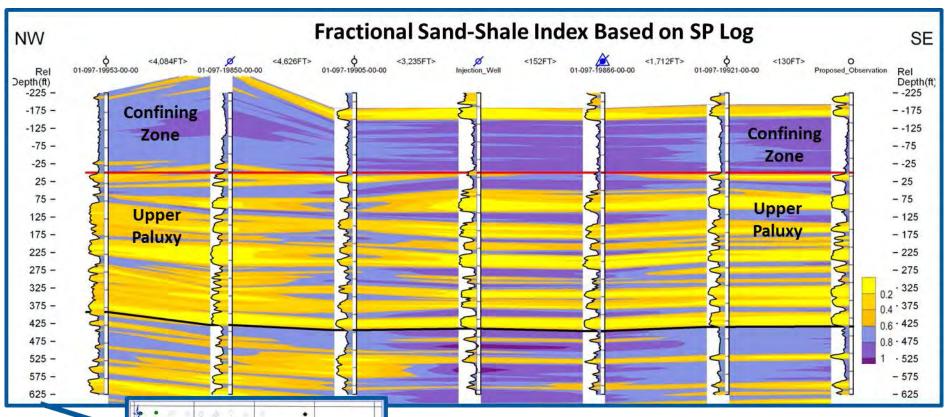
THERN ST.

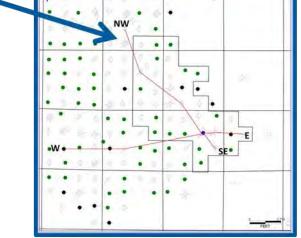
Selecting a Good Storage Formation

System	Series	Stratigraphic Unit	Ma	ijor Sub Units	Potential Reservoirs and Confining Zones				
	Plio- Pliocene		Citronelle Formation		Freshwater Aquifer				
	Miocene	Undifferentiated			Freshwater Aquifer				
-	Q	No. Children and and	Chickasawhay Fm.		Base of USDW				
Tertiary	Oligocene	Vicksburg Group	Bucatunna Clay		Local Confining Unit				
Y		Jackson Group		-	Minor Saline Reservoir				
	Eocano	Claiborne Group	T	alahatta Fm.	Saline Reservoir				
	10	Wilcox Group	Hatchetigbee Sand						
	Paleocene		Bashi Marl Salt Mountain LS		Saline Reservoir				
1000	ene	Midway Group	Port	ers Creek Clay	Confining Unit				
-		Selma Group			Confining Unit				
	1.77	Eutaw Formation			Minor Saline Reservoir				
	Upper		Upper Tusc.		Minor Saline Reservoir				
	ber	Tuscaloosa Group	Mid. Tusc	Marine Shale	Confining Unit				
			Lower Tusc.	Pilot Sand Massive sand	Saline Reservoir				
0	-	Washita-	Dantzler sand		Saline Reservoir				
re		Fredericksburg	Basal Shale 'Upper' 'Middle' 'Lower'		Primary Confining Unit				
Cretaceous		Paluxy Formation			Injection Zone				
2	Lower	Mooringsport Formation			Contining Unit				
	-	Ferry Lake Anhydrite			Confining Unil				
			Rodessa Fm. Upper'		AVTIGATION // WA		Oil Persona		Oil Reservoir
		Donovan Sand		'Middle'	Minor Saline Reservoir				
			'Lower'		Oil Reservoir				

- Proven four-way closure at Citronelle Dome
- Injection site located within Citronelle oilfield where existing well logs are available
- Deep injection interval (Paluxy Form. at 9,400 feet)
- Numerous confining units
- Base of USDWs ~1,400 feet
- Existing wells cemented through primary confining unit
- No evidence of faulting or fracturing (2D)

20


Denbury





Extrapolated Continuity of Upper Paluxy Sandstones At Citronelle Southeast Unit Northwest - Southeast

SECARB Citronelle: MVA Sample Locations

OUTHERN STATE

NET

Bureau of Economic

Geology

Coast Carbon Center

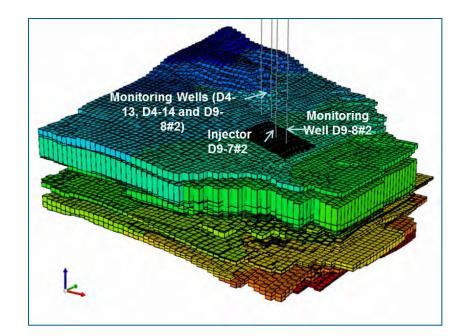
dvanced Resource International, Inc.

- One (1) Injector (D-9-7 #2)
- Two (2) deep Observation wells (D-9-8 #2 & D-9-9 #2)
- Two (2) in-zone Monitoring wells (D-4-13 & D-4-14)
- One (1) PNC logging well (D-9-11)
- Twelve (12) soil flux monitoring stations

22

Denbury ^O

Whole Core Analyses & Confining Unit Characterization


CoreAnalysis	D 9-7 #2	D 9-8 #2	D 9-9#2
Spectral Gamma Ray	X	X	X
Routine Porosity, Permeability, Grain Density	Х	Х	Х
Vertical and Orthogonal Permeability	Х	Х	Х
Relative Permeability		Х	
X-ray Diffraction Mineralogy	Х	Х	Х
Fluid Sensitivity – Permeability vs. Throughput		Х	
Thin-Section Petrography	Х	Х	Х
Mercury Injection Capillary Pressure		Х	
Total Organic Carbon		Х	Х
Source Rock Analysis		Х	Х
Shale Rock Properties		Х	Х
Methane Adsorption Isotherm		Х	Х

Advanced Resources International, Inc.

23 SECARB Anthropogenic Test SP101013

Geology Summary for Simulation

- Proven four-way closure at Citronelle Dome with existing logs
- Injecting into Paluxy @ 9,400 feet
- >260 net feet of "clean" sand
- Average porosity of 19% (ranges from 14% to 24%)
- Average permeability of 300 md (ranges from 30md to 1,000 md)
- No evidence of faulting/fracturing (2D)

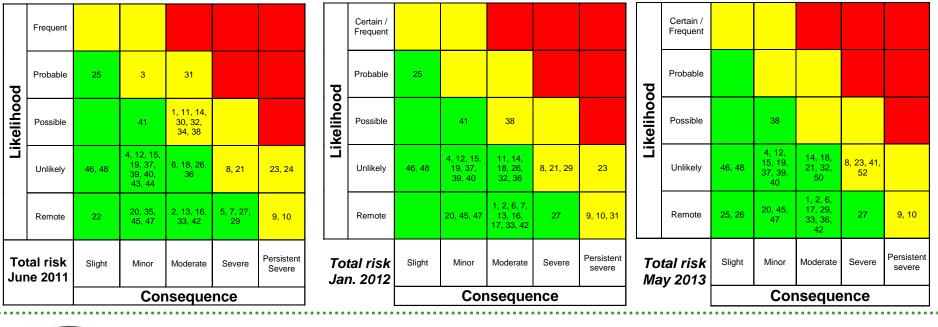
SECARB's Anthropogenic Test Project Integration & Risk Management

Business Integration

- Key business integration questions:
 - What business relationships must be established?
 - How can CO₂ transportation and injection impact the capture unit?
 - How can plant shutdown impact CO₂ transportation and injection?
 - What types of communications and control systems are needed?

Monitoring & Compliance

- Key monitoring & compliance questions:
 - How are risk-based monitoring programs developed and implemented?
 - What safeguards and mitigating strategies can be employed to reduce risk?
 - How can risk management tools assist in project compliance?


Project Risk Assessment Matrix: DNV KEMA Approach

		CONSEQUENCE				LIKELIHOOD				
		CONSI	A: Remote	B: Unlikely	C: Possible	D: Probable	A: Certain			
		Health and safety (HS) And Environmental protection (E)	Cost	Reputation	Schedule to start-up of operations	Very unlikely (P<0.05) to occur during life of project	Unlikely to occur during life of project	50/50 chance of occurring during life of project	Likely to occur during life of project	Very likely (P>0.95) to occur during life of project
SEVERITY	E: Persistent Severe	HS: On site & off site exposures/injuries. E: Persistent severe damage, Extensive remediation required. Environment restored > 5 years.	More than \$10 million	National or International media attention. Regulators shut down operations.	More than 12 months	М	М	н	н	н
	D: Severe	HS: On site injuries/exposures leading to absence from work more than 5 days or long term negative health effects. E: Severe environmental damage. Remediation measures required. Environment restored < 5 years	\$1 to \$10 million	Regional media attention. Regulatory or legal action taken	6-12 months	L	М	М	н	н
CONSEQUENCE SEV	C: Moderate	HS: Lost time event/on site injury leading to absence from work up to 5 days, or affecting daily life activities more than five days. E: Damage managed by Company response teams, env. restored < 2 years.	\$100 to \$1000 k	Local media attention. Regulatory or legal action likely	3-6 months	L	L	М	М	н
CONSE	B: Minor	HS: Minor injury or health effect - affecting work performance, such as restricting work activities, or affecting daily life activities for up to 5 days. E: Damage, but no lasting effect.	\$10 to \$100 k	Public awareness may exist, but there is no public concern	1-3 months	L	L	L	М	М
	A: Slight	HS: Slight injury or health effect - not affecting work performance or daily life activities. E: Damage contained within premises.	Less than \$10 k	On-site communications	Less than 1 month	L	L	L	L	М

Evolution of risk profile

- Risk scenarios (by reference no.)
- Risks in yellow "tolerable" band gradually reduced through implementation of risk treatment: 15 (June 2011) -> 8 (Jan. 2012) -> 6 (May 2013).
- Open risks reduced from 47 (June 2011) to 38 (Jan. 2012) to 35 (May 2013).

Advanced Resources International, Inc. 29

Denbury ^O

Gulf

Coast Carbon Center

SECARB Citronelle: Top ranked risks

- Initially **June 2011** the top ranked risks related to:
 - **Permitting** 30, 31
 - Injectivity and containment 8, 9, 10, 11
 - Modelling and monitoring 14, 32
 - Reliable operations 1, 23, 24, 38,
 - Pipeline and wells 3, 21, 34
- In **January 2012**, Class V permit had been granted and drilling of monitoring wells and pipeline construction had been completed. Top ranked remaining risks related to:
 - Authorization to inject 31
 - Containment 8, 9, 10 (low likelihood, but high consequence)
 - Reliability of operations 23, 38
 - Pipeline or casing leak 21, 29
- In May 2013 project had been operating for 9 months. Top remaining risks related to
 - Possible loss of containment 8, 9, 10
 - Reliability of operations 23, 41
 - Post-injection MVA / Authorization for closure 52

Denbur

30

Public Outreach and Education

- Public Outreach Plan using DOE Best Practices Model
- Active Community Engagement through Open House Meetings and Tours
- Communicating Project Status
 - Local, Regional, International Outreach
 - Annual SECARB Stakeholders' Briefing
 - Dedicated Website
 - Facebook Page: facebook.com/SECARB
 - Twitter Feeds: @SECARB1
 - Press Releases & E-blasts
 - RCSP Working Groups
- Knowledge Sharing
 - Lessons Learned presented in Various Workshops & Conferences
- Education: Training Center (separately funded)
 - SECARB-Ed (secarb-ed.org)
 - Classroom Training and Webinars
 - RECS-2011, 2012, and 2013 (hosted in AL)

