

CCS Technology Developments Gaps, Opportunities and Research Fronts

Washington D.C. United States
CSLF Technical Group Meeting
November 5, 2013

Dr. Richard Aldous
CEO CO2CRC

Technology Opportunities & Gaps Task Force

- Members:

Australia: Richard Aldous

Korea: Chang-Keun Yi

Norway: Lars Ingolf Eide

USA: Mark Ackiewicz

 Also valuable input from CO2CRC researchers and Valery Linton & Stanley Santos

Overview

c or b on sequestration leadership forum

- Identified key research fronts in CCS
- Opportunities, gaps & recommendations
- Considers the dynamics around CCS technology development
- Supports 2013 CSLF TRM
- A CSLF listing of R&D pilot plants

Sections of Report:

- Capture and Integrated Combustion
- CO₂ Transport
- Storage
- MMV
- Knowledge & capability building
- Industry dynamics and technology development
- Listing of pilot projects

Example

Solvent Absorption - Materials

Core R&D **Objectives**

Contending **Technologies** Challenges

Prospective **Technology Fronts**

Regeneration Energy

Prospective Technology Fronts: Solvents

- Amines Precipitating amino acids

Oxidation inhibitors

Reducing vapour pressure

- Carbonates Promoting reaction rates

Solids handling

- Blends Combining best features of solvents

- Ionic liquids & Separation techniques

Immiscible liqs. material manufacturing

-Physical Solvents Blends to improve absorption rates

High temperature thermal stability

Post -Combustion

Capture

Pre -Combustion Capture

Adsorbent Materials

Adsorbent Equipment/Processing

Technology Maturity

Overall High Level Observations

- At a high level there are no major technology gaps
 - CCS technologies are ready and available and being deployed today.
- There are many contending capture technologies in both current technologies & 2nd and 3rd generation technologies
- Next generation technologies vital for substantial cost reduction
- No strong market pull for technologies at the moment
- The lack of exploration is a significant barrier to rapid deployment and thus learning by doing

Observations on Capture & Integrated Combustion

- Capture technologies are available (mostly solvent-based) and deployed
 - cost of these technologies will continue to fall substantially by 2025-2030.
- Need to support 2nd and 3rd generation technologies,
 - Lead times can run to decades.
 - Adsorbents and membranes may well play a big role.
- Pre-combustion capture also progressing
- Chemical looping cement industry developments
- Oxy fuel technologies progressing well low cost ASU the key
- Capture of CO₂ from gas combustion needs to be progressed

Technology and Engineering Fronts for Oxyfuel Combustion

Transport

- Transport pipeline technology is mature and available; however, some technology improvements are needed to get costs down and further increase safety.
- Large scale transport of CO₂ by ship offers promise and needs to be demonstrated at scale.
- Experience is needed in planning, designing and implementation of large-scale CO₂ transport networks.

Fundamental Storage R&D

Storage Geology

Eg Seals, faults saline aquifers

Sub surface CO2 behaviour

Eg fluid flow, trapping mechanisms.

MMV technologies

Eg seismic EM etc

Storage

 CO₂ storage technology builds on years of research
 experience in oil & gas

 There are fundamental and applied aspects of CCS that are unique

Recommendations on Storage

- Need to continue both fundamental and applied R&D
 - Modelling and understanding CO₂ behavior in the subsurface must be continued to improve operational efficiency and effectiveness of storage
- Internationally consistent standards required (based on oil and gas industry practice) for:
 - Storage site characterisation methodologies;
 - Storage efficiency factors; and
 - Capacity estimation and reporting standards.
- Technology and risk management strategies to mitigate or manage unintended CO₂ migration.

Recommendations on MMV

- Continue towards continuous, high resolution, low cost, low impact subsurface monitoring;
- Develop new seismic interpretation and inversion techniques for enhanced CO₂ detection.
- Establish technologies and methodologies for offshore (sub marine) MMV
- Continue work on controlled release calibration and natural analogues; important for CO₂ detection and accounting;
- Develop an agreed methodology and language for dealing with most monitoring – a null result;

Recommendations on other aspects sequestration leadership forum

Building technical knowledge capability and people

- Continue R&D and technology development to both develop the knowledge base and to train engineers and scientists in CCS technologies.
- Stimulate international collaboration.

Industry dynamics associated with exploration and technology development

- Start the identification and pre-competitive data generation of prospective storage basins, making assessments of the likely realistic storage capacity.
- Either start exploration or incentivise the private sector to start exploration.

Exploration Lead Times

Incentives Dynamics Exploration & Technology

 Governments provide grants or incentives

 Market dynamics will drive exploration and technology progress

Concluding Thoughts

- Governments now have a technology that can be deployed to manage carbon emissions.
- Consider the role of government in USA SO₂ scrubbing and the nuclear industry, and gas pipelines in many countries
- The rate of take-up and associated improvements in technology needs to be incentivized.
 - important for getting new projects up
 - vital to pull next generation technologies through development

CCS Technology Developments Gaps, Opportunities and Research Fronts

Richard Aldous
CEO CO2CRC

Australia