

Regional Opportunities for Carbon Dioxide Capture and Storage in China

Project Update

GHGT-9, Washington DC 16 November 2008 RT Dahowski, RH Gentile

Topics

- Key findings to date
- Project team and objectives
- Inventory of CO₂ point sources
- Candidate storage formations
- Cost curve development
- Preliminary results
- Possible next steps

Select Findings

- Over 1620 large stationary CO₂ point sources with total emissions of more than 3,890 MtCO₂/yr
- Estimated CO₂ storage capacity on the order of 2300 GtCO₂ in onshore basins in China
- 91% of these large CO₂ point sources have a candidate CO₂ storage reservoir within 100 miles (161 km)
- There appears to be strong potential for CCS technologies to offer significant emissions reductions in China at costs less than \$10/tCO₂ for transport and storage

Regional Opportunities for Carbon Dioxide Capture and Storage in China

A Joint China-U.S. Research Collaboration

- Sponsoring Government Agencies
 - United States Department of Energy
 - Chinese Ministry of Science and Technology
- Project Team
 - U.S./China Energy and Environmental Technology Center
 - Leonardo Technologies, Inc.
 - Battelle
 - Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
 - Pacific Northwest National Laboratory
 - Tsinghua University
 - Montana State University

Ministry of Science and Technology of the People's Republic of China

Project Objectives

- Develop the first ever bottom-up cost assessment of the potential to utilize carbon dioxide capture and storage (CCS) across the Chinese economy
- Assess the potential and costs for CCS technologies to deploy across regions of China
- Inventory large anthropogenic CO₂ point sources from power plants and other industrial sources
- Identify potential candidate geologic CO₂ storage reservoirs/basins which could be used for the safe, long-term storage of CO₂
- Examine the economics of CCS and develop cost curves for CO₂ transport and storage via optimized source-reservoir matching

Project Overview

Sources + reservoirs + economics + analysis \rightarrow <u>cost curves</u>

- A cataloging of existing CO₂ point sources and the following types of candidate CO₂ storage reservoirs:
 - Deep saline formations
 - Deep unmineable coal seams
 - Depleted oil and gas fields
- Incorporate data integrated into GIS modeling framework to enable integrated spatial and economic analyses
- Build CO₂ cost curve describing CCS potential versus cost
- Examine regional opportunities, economics, and technical constraints
- Collaborative effort drawing on wealth of team experience

Large CO₂ Point Sources in China

Battelle

Geologic CO₂ Storage Capacity

 Estimated Onshore Storage Capacity,
MtCO₂:

Battelle

DSF:	2,288,000
Gas:	4,280
Oil:	4,610
Coal:	11,970
TOTAL:	2,309,000
Potential Offshore Storage Capacity:	

780,000 MtCO₂

Cost Curves for CO₂ Transport & Storage

- Applied cost-minimizing optimization process developed and used previously for North American study
- Updated cost assumptions based on more recent published cost estimates
- Net Storage Cost =

Cost of Transport (via pipeline from plant gate)

- + Cost of Injection (site characterization, capital, operating, & MMV)
- Revenue from Value-Added Hydrocarbon Recovery
- The cost curve methodology computes thousands of source-reservoir cost pairs for these point sources and candidate storage reservoirs, i.e., many CO₂ point sources will have many candidate storage options available within a reasonable distance.

Preliminary Cost Curve for CO₂ Transport & Storage in China

10

Battelle

Battelle

Summary of Results to Date

- Over 1620 large CO_2 point sources \rightarrow 3890 MtCO₂/yr
- 2300 GtCO₂ potential storage capacity in onshore reservoirs
- There is strong potential for CCS technologies to offer significant emissions reductions in China, at transport and storage costs of up to about \$10/tCO₂
- Deep saline formations offer significant storage potential and 90% of the CO₂ stored in this analysis is injected into one of these
- This work represents an initial step; follow-on research is critical to further understand the technical and economic potential and challenges for CCS to help reduce the carbon emissions from the growing Chinese economy

Possible Next Steps

- Continue U.S. / China collaboration
- Expand and refine CO₂ point source inventory
- Further CO₂ storage reservoir evaluations and data collection
- Assess and refine costs and methodology
- Incorporate capture and compression costs
- Examine more closely the economics of offshore storage
- Look at challenges / potential technical and economic barriers to CCS deployment
- Start identifying potential candidates for more detailed evaluation / demonstration project
- More...

.Un