MISSION INNOVATION

Accelerating the Clean Energy Revolution

Carbon Capture Innovation Challenge

Tidjani Niass, Carbon Capture Challenge Co-Lead Saudi Aramco

Mission Innovation

- A Ministerial level initiative launched on November 30th 2015
- Mission Innovation's goal is to accelerate the pace of clean energy innovation to achieve performance breakthroughs and cost reductions to provide widely affordable and reliable clean energy solutions that will revolutionize energy systems throughout the world over the next two decades and beyond.

Mission Innovation

- A Ministerial level initiative launched on November 30th 2015
- Mission Innovation's goal is to accelerate the pace of clean energy innovation to achieve performance breakthroughs and cost reductions to provide widely affordable and reliable clean energy solutions that will revolutionize energy systems throughout the world over the next two decades and beyond.
- MI seek to:
 - Double Governmental Investment in Clean Energy Innovation over 5 years (2016-2021), from \$15B to \$30B
 - Increase Private Sector Engagement in Clean Energy Innovation
 - Improve Information Sharing among MI countries

Innovation Challenges

- Global Calls for Actions in High Priority Areas of Mutual Interest
- Opportunities for Collaboration Between Mission Innovation Members
- Encourage Increased Engagement by Global Research Community, Industry, and Investors
- Support Mission Innovation goals of reducing GHG emissions, increasing energy security and creating new opportunities for clean economic growth
- Outcomes May Inform, Guide and Support MI Country Investments in R&D

23/04/18 4

Innovation Challenges

- Global Calls for Actions in High Priority Areas of Mutual Interest
- Opportunities for Collaboration Between Mission Innovation Members
- Encourage Increased Engagement by Global Research Community, Industry, and Investors
- Support Mission Innovation goals of reducing GHG emissions, increasing energy security and creating new opportunities for clean economic growth
- Outcomes May Inform, Guide and Support MI Country Investments in R&D

		*	0		*	+	+			•	2	ᄠ	5015	+-		
1	Smart Grids Innovation Challenge															
2	Off Grid Access to Electricity Innovation Challenge															
3	Carbon Capture Innovation Challenge															
4	Sustainable Biofuels Innovation Challenge															
5	Converting Sunlight Innovation Challenge												0		0	
6	Clean Energy Materials Innovation Challenge								-							
7	Affordable Heating and Cooling of Buildings Innovation Challenge							0								

Carbon Capture Innovation Challenge

- Co-Leads: Saudi Arabia, United States
- 20 Mission Innovation participating countries
- Objective
 - Enable near-zero CO2 emissions from power plants and carbon intensive industries

Work-Plan

- Organize a CCUS Experts Workshop
- Engage Stakeholder (WEF, IEA, Industry, ...)
- Build Multilateral Collaboration Mechanisms

CCUS Experts' Workshop

- Houston Sept. 25-29
- 257 Participants from Academy and Industry
- 22 Countries participated
- 13 Parallel Panel Discussions

CCUS Experts' Workshop Structure

Focus Areas

CO2 Capture - Panels

CO2 Utilization - Panels

CO2 Storage - Panels

Solvents

Thermochemical Conversion and Hydrogenation of CO2

Injectivity & Capacity

Sorbents and Looping Systems

Electrochemical and Photochemical Conversion of CO2

Monitoring, Verification and Performance Metrics

Membranes

CO2 Conversion to Solid Carbonates

Forecasting and Managing Induced Seismicity

Combustion and Other Technologies

Biological Conversion of CO2

Well Diagnostics

Crosscuttings Topics (TEA, LCA,...)

Panel Outcomes Structure

Scientific challenges

Brief overview of the underlying science challenge

Summary of priority research direction (PRD)

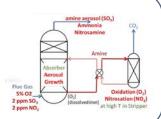
- What fundamental research is needed to address the challenge?
- Why can this research be done now? (e.g. are there recently developed capabilities?)

Potential scientific impact

- What impact will this research have on the CCUS scientific field?
- What impact will it have on the general scientific community?

Potential impact on CCUS technology

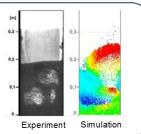
 How will this impact CCUS-relevant technologies?

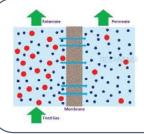

CO2 Capture PRDs

Solvents

Designing high performing solvents for CO2 capture

Creating environmentally friendly solvent processes for CO2 capture

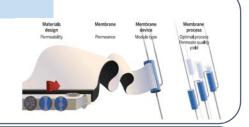


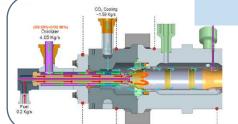


Sorbents

Designing tailor-made sorbent materials

Integrating sorbent materials and processes

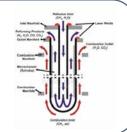


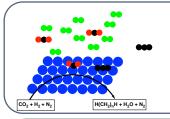


Membranes

Understanding transport phenomena in membrane material

Designing membrane system architectures




Combustion and Other Technologies

Catapulting combustion into the future

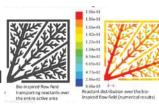
Producing hydrogen from fossil fuels with CO2 capture

CO2 Utilization PRDs

Thermochemical Conversion and Hydrogenation of CO2

Valorizing CO2 by breakthrough catalytic transformations into fuels & chemicals

Creating new routes to carbon-based functional materials from CO2



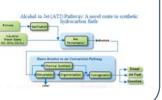
Electrochemical and Photochemical Conversion of CO2

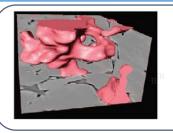
Designing and controlling molecular-scale interactions for electrochemical and photochemical conversion of CO2

Harnessing multiscale phenomena for high-performance electrochemical and photochemical transformation of CO2

CO2 Conversion to Solid Carbonates

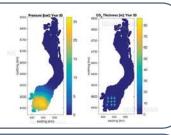
Accelerating carbon mineralization by harnessing the complexity of solid-liquid-gas interfaces

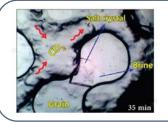

Tailoring material properties to enable carbon storage in products


Biological Conversion of CO2

Tailoring microbial and bioinspired approaches to CO2 conversion Hybridizing electrochemical and biological processes for CO2 conversion to fuels, chemicals, and nutrients

Designing complex interfaces for enhancing hydrocarbon recovery with carbon storage

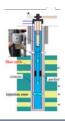

CO2 Storage PRDs

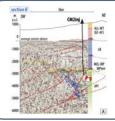


Injectivity & Capacity

Advancing multi-physics and multi-scale fluid flow to achieve gigatonne/year capacity

Understanding dynamic pressure limits for gigatonne-scale CO2 injection

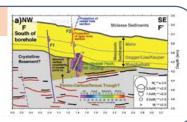




Monitoring, Verification and Performance Metrics

Optimizing injection of CO2 by control of the near-well environment

Developing smart convergence monitoring to demonstrate containment and enable storage site closure



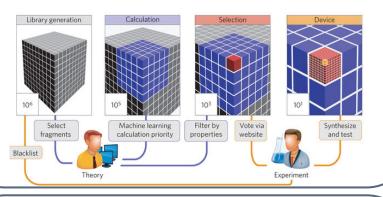
Forecasting and Managing Induced Seismicity

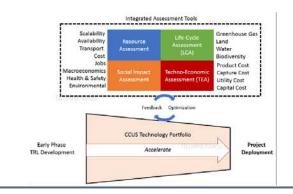
Realizing smart monitoring to assess anomalies and provide assurance

Improving characterization of fault and fracture systems

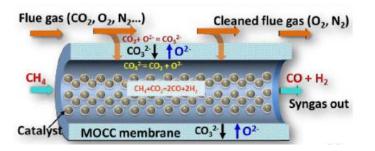
Well Diagnostics

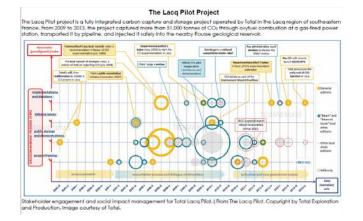
Achieving next-generation seismic risk forecasting


Locating, evaluating, and remediating existing and abandoned wells

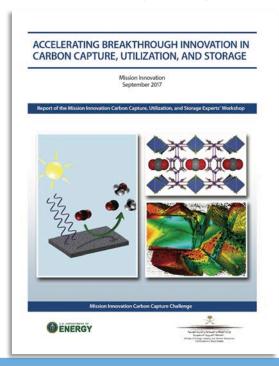

Establishing, demonstrating and forecasting well integrity

CCUS Crosscutting PRDs


Integrating experiments, simulation, and machine learning across multiple length scales to guide materials discovery and process development in CCUS


Developing tools to integrate life-cycle technoeconomic, environmental and social considerations to guide technology portfolio optimization

Coupling basic science and engineering for intensified carbon capture, purification, transport, utilization and storage processes



Incorporating social aspects into decision-making

CCUS Experts' Workshop Outcomes

- Established current state of technology in CO2 Capture, CO2 Utilization, and CO2 Storage
- Created an international consensus on the most critical scientific challenges on CO2 Capture, CO2 Utilization, CO2 Storage, and Crosscutting CCUS topics
- Established internationally agreed Priority Research Directions (PRDs)
- Completed a report on CCUS Basic Research Needs
 - Intended to serve as a key resource for the international CCUS research community, governments, and the private sector, helping to inform national R&D policies and programs
 - The PRDs are not meant to be prescriptive and all-inclusive. Rather, they are designed to inspire CCUS research community to elucidate the foundational scientific phenomena that underpin CCUS.

Next Steps

- Report progress at the Mission Innovation 3rd Ministerial (MI3)
 - May 2018, Malmo/Copenhagen, in conjunction with the 9th Clean Energy Ministerial
 - Co-hosted by the European Commission, Denmark, Finland, Norway, and Sweden
 - Carbon Capture Challenge is part of a public-private cooperation on clean energy innovation roundtables
 - Setup include 6 high-level government reps & 6 high-level private-sector actors, investors, international organizations, (BEC, IEA, WEF,)
 - Official launch of the CCUS experts' workshop report
- Develop collaboration mechanisms
- Foster engagement with industry and other multilateral CCUS initiatives
 - CSLF, IEAGHG, GCCSI, OGCI, ...

MISSION INNOVATION

Accelerating the Clean Energy Revolution

Thank You