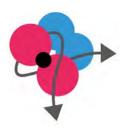
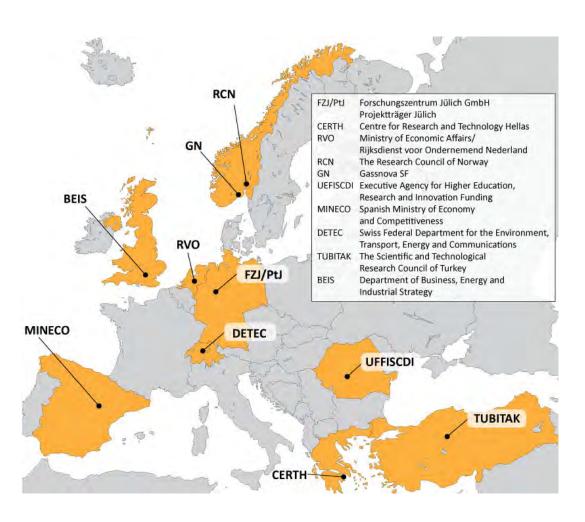


Enabling a Low-Carbon Economy via Hydrogen and CCS

Svend Tollak Munkejord, SINTEF Energy Research, project coordinator http://www.elegancy.no/

CSLF Technical Group Meeting, Venice, 2018-04-23


Outline of presentation

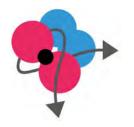


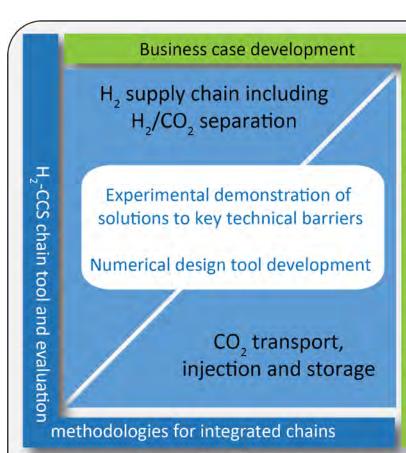
- Briefly about
 - SINTEF
 - The ERA-NET ACT project
- ELEGANCY
 - Aim
 - Approach
 - Some details

ERA-NET ACT

- Accelerating CCS Technologies
- H2020
- Ten partners from nine countries
- Led by The Research Council of Norway
- First call budget: 41 MEUR

ELEGANCY – context

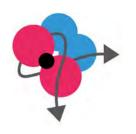



- The low-carbon economy needs H₂
- The low carbon economy needs CCS
- Elektrolyse Reforming Natur-Olje (1) SINTEF
- Combining hydrogen with CCS offers an exciting opportunity for synergies and value creation
- ELEGANCY aims at contributing to fast-track the decarbonization of the European energy system

ELEGANCY – objectives

Fast-track the decarbonization of Europe's energy system by exploiting the synergies between two key low-carbon technologies: CCS and H₂. To this end, **ELEGANCY will:**

- Develop and demonstrate effective CCS technologies with high industrial relevance
- Identify and promote business opportunities for industrial CCS enabled by H₂ as a key energy carrier by performing 5 national case studies
- Validate key elements of the CCS chain by frontier pilot- and laboratory-scale experiments using inter alia ECCSEL and EPOS research infrastructure
- Optimize combined systems for H₂ production and H₂-CO₂ separation
- De-risk storage of CO₂ from H₂ production by providing experimental data and validated models
- Develop simulators enabling safe, cost-efficient design and operation of key elements of the CCS chain
- Provide an open source techno-economic design and operation simulation tool for the full CCS chain, including H₂ as energy carrier
- Assess societal support of key elements of CCS



Adapting gas infrastructure to H₂ in Germany

Social acceptance

Environmental aspects

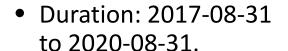
ELEGANCY – key information

The Norwegian full scale CCS chain and synergies with H₂ production

Case studies

Decarbonization of

UK cities and


industrial clusters

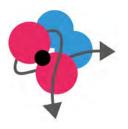
Enabling Swiss

CO,-free transport

by H, and CCS

Budget: 15 599 kEUR

Decarbonizing the


Dutch economy

(Rotterdam)

ELEGANCY – work packages

Case studies incl. social acceptance, environmental aspects and CCS-H₂ market considerations: UK (large-scale decarbonization), Netherlands (Rotterdam decarbonization), Norway (full scale CCS chain and H₂ production), Switzerland (decarbonization of transport sector), Germany (adapting gas infrastructure and processes to H₂)

WP5

H₂-CCS chain tool and evaluation methodologies for integrated chains: (ICL, SINTEF, PSI, RUB, TNO)
WP4

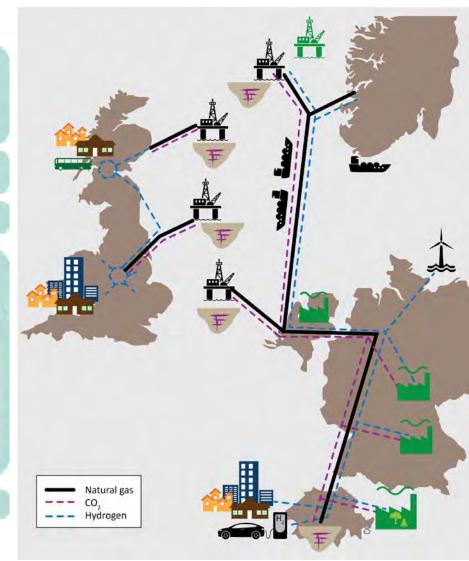
Business case development: (UiO, FirstClimate, SDL)

WP3

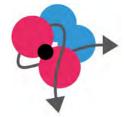
H₂ supply chain including H₂/CO₂ separation

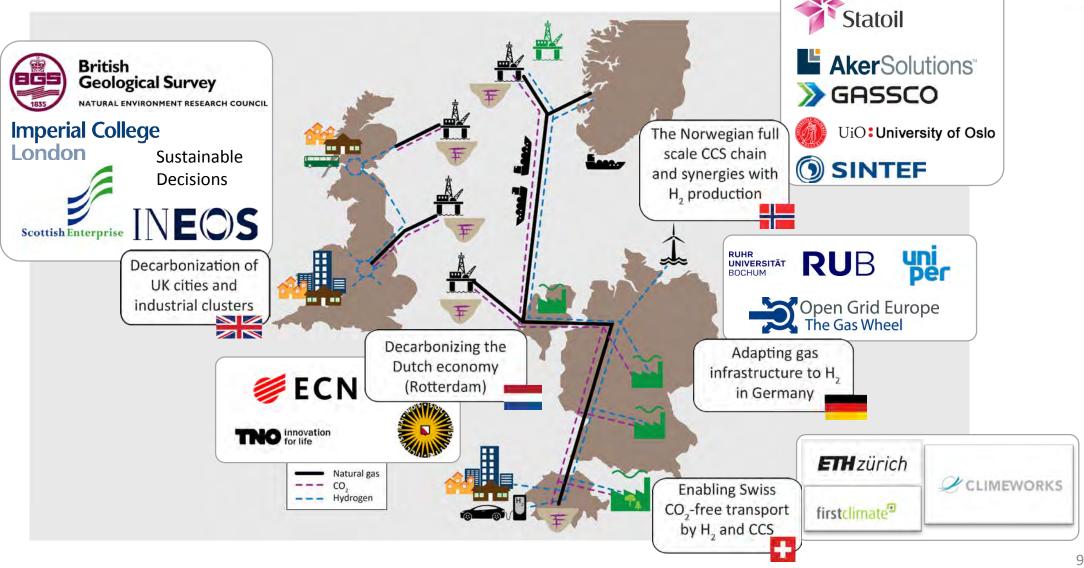
WP1

- H, from natural gas (ETH, PSI)
- H, from other sources (ECN)
- Characterization of CO₂-CO-H₂ mixtures (RUB)

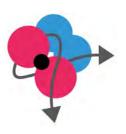

CO₂ transport, injection and storage

WP2

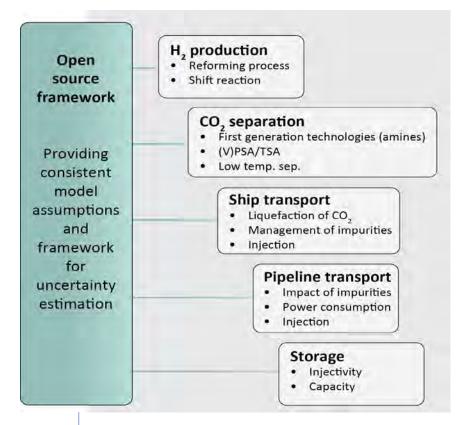

WP6


- CO₂-brine model (RUB,ICL)
- CO₂ transport-injection interface (SINTEF)
- Storage-site characterization and selection (ICL)
- Mt. Terri decametre scale experiment (ETH)
- Impact of H₂ in the CO₂ stream on storage (BGS)
- · De-risking storage

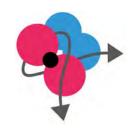
ELEGANCY project management, network building and dissemination (SINTEF)



ELEGANCY – Case studies

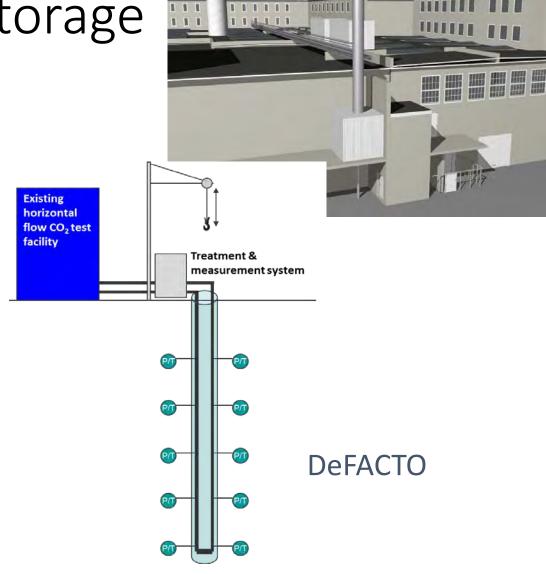


H₂-CCS chain tool and evaluation methodologies for integrated chains


- Open-source framework
 - More widespread use
 - More dynamic
- 'Open' or 'closed' modules
- Stationary design mode
- Dynamic operation mode
- Multi-scale models for the chain components

Market Behaviour

- Multi-product optimization
- Market dynamics response



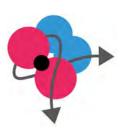
Description	Scale	Partner
Adsorption infrastructure (ECCSEL)	Lab-scale	ETH
Cycling adsorbent analyser	Lab-scale	ECN
Single- and multi-column reactive PSA/TSA equipment	Pre-pilot, TRL 5	ECN
Equipment for measurements of density, speed of sound and dielectric permittivity	Lab-scale	RUB
Vertical flow facility	Pilot-scale	SINTEF
Pipe and vessel depressurization (ECCSEL)	Lab-scale	SINTEF
Core-flooding laboratory	Lab-scale	ICL
Batch-reactor for mineral-dissolution kinetics	Lab-scale	ICL
Equipment for measurements of CO ₂ -brine-mineral contact angle, interfacial tension and phase behaviour	Lab-scale	ICL
Hydrothermal laboratory (ECCSEL)	Lab-scale	BGS
Geo-microbiology laboratory (ECCSEL)	Lab-scale	BGS
Rock deformation laboratory (ECCSEL)	Lab-scale	SCCER
Micro-seismic monitoring arrays	Lab-scale	SCCER
Mt. Terri research rock laboratory (EPOS)	Pilot-scale	SCCER

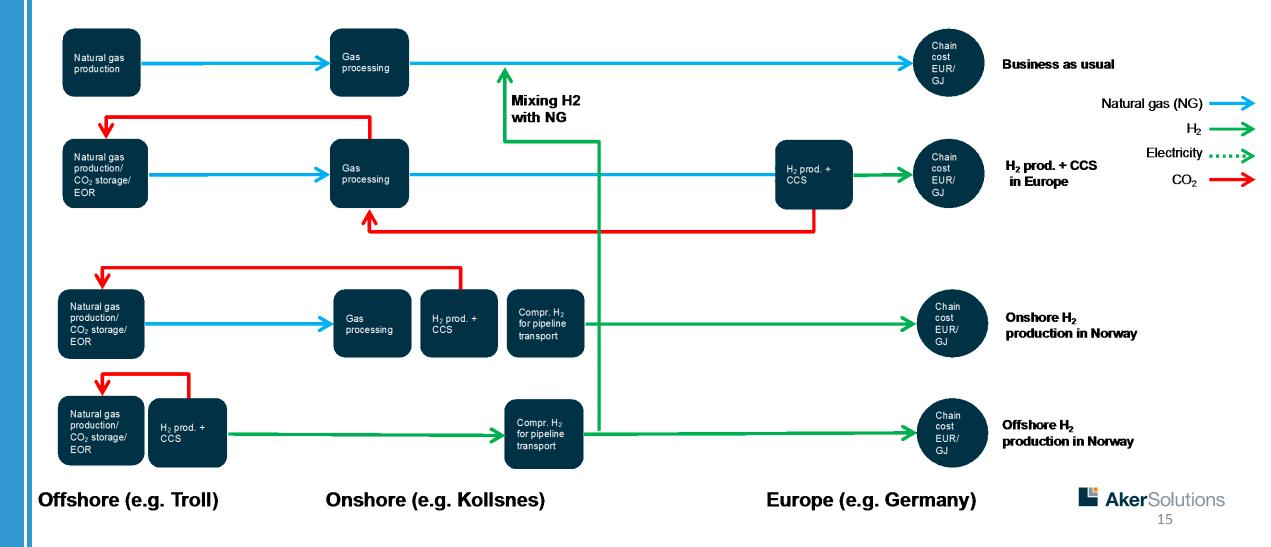
Well flow and transport-storage interface

- Horizontal depressurization
- Vertical flow
- Development of tools for safe, efficient and economic design and operation of CO₂ pipelines and injection wells

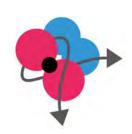

Norwegian case study in ELEGANCY

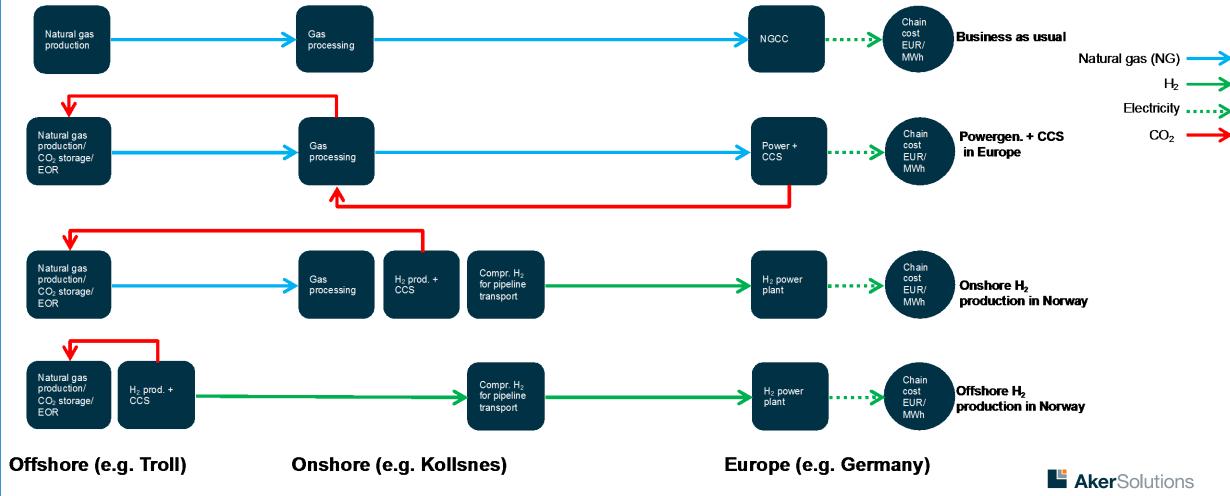
• Partners: SINTEF, Aker Solutions, Statoil, Gassco

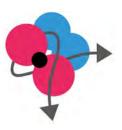

Objective:


Identify and develop a business case for a Norwegian H₂ value chain based primarily on natural gas

- Can H₂ produced from Norwegian natural gas be a cost efficient way to decarbonize Europe?
- Can export of H₂ (from natural gas with central CCS) be more economical than export of natural gas and distributed CCS?
- Are there synergies with the Norwegian Full Scale CCS project that can be leveraged?
- Can offshore hydrogen production with CCS/EOR be more economical than onshore hydrogen production with CCS/EOR?




European fuel market - supply options



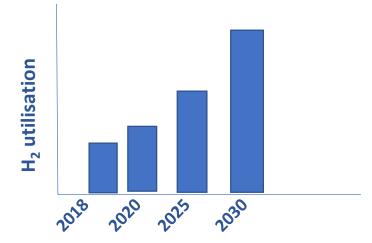
European electricity market – local power generation

Define H₂ utilisation scenarios

Transport sector

- Cars
- Taxis
- Buses
- Ferries

Residential sector

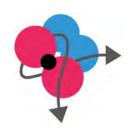

- Home heating
- Fuel cells

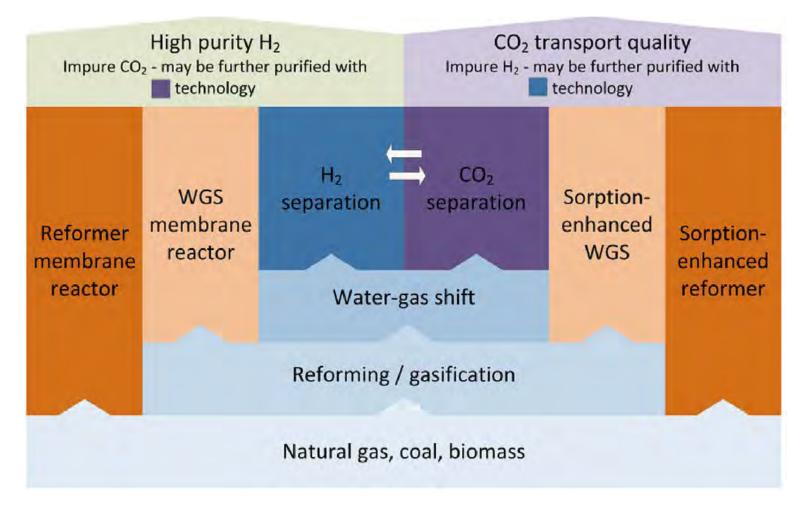
Industrial sector

- Feedstock (Refining, Ammonia, methanol, petrochemical)
- Fuel (combustion)
- Reducing agent (metal industry

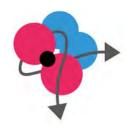
Energy sector

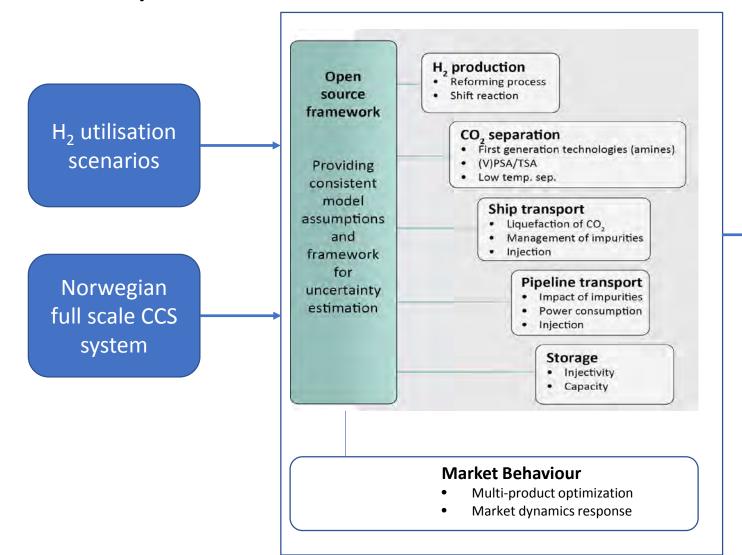
- H₂ fired gas turbines
- Fuel cells

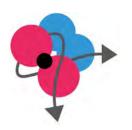

		H ₂ purity (min) [%]	Impurity limits (max) [ppm]
Refining		~95	S: low levels
Ammonia		23-25 (N ₂ :74-77)	CO ₂ , CO, H ₂ O and S: low levels
PEM fuel cells for automotive		99.97	$H_2O:5$, $HC:2$, $O_2:5$, $He:300$, $N_2 + Ar:100$, $CO_2:2$, $CO:0.2$, $S:0.004$, $NH_3:0.1$
purposes			$H_2O:5$, $HC:100$, $O_2:5$, $He+N_2+Ar:500$, $CO_2:2$, $CO:0.5$, $S:0.01$, $NH_3:0.1$
PEM fuel cells for stationary	Cat. 1	50	H ₂ O:NC, HC:10, O ₂ :200, N ₂ + Ar + He:50%, CO:10, S:0.004
purposes ^a	Cat. 2	50	H ₂ O:NC, HC:2, O ₂ :200, N ₂ + Ar + He:50%, CO:10, S:0.004
	Cat. 3	99.9	$H_2O:NC$, $HC:2$, $O_2:50$, $N_2 + Ar + He:0.1%$, $CO:2$, $S:0.004$
Gas turbines		Low	Limited amount of Na, K, V and S
Industrial fuel (eg. power		99.90 ^b	H ₂ O:NC, HC:NC, O ₂ :100, N ₂ :400, S:10
generation or heat			
energy source)			


NC = not to be condensed, HC = Hydrocarbons on methane basis, S = Sulfur compounds.

- ^a The categories are defined to meet the needs of different stationary applications.
- b This value is from an ISO standard and should not be taken as a definite limit.


Voldsund, M., Jordal, K. and Anantharaman, R. (2016) 'Hydrogen production with CO2 capture', *International Journal of Hydrogen Energy*, 41(9)


Identify suitable technologies for H₂ production, CO₂ purification and transport


Utilise Value Chain Tool to develop business case

Norwegian H₂ value chain
+
Answers to questions raised in the Norwegian Case

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), FZJ/PtJ (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco AS and Statoil Petroleum AS, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.

