Update on Mitsubishi's KM CDR ProcessTM

and Experience

April 2018

➤ What is KM CDR ProcessTM ?

 \succ CO₂ Application

Petra Nova project

Summary

Next Way Forward & Suggestion

MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

CONFIDENTIAL

History & Accomplishments of KM CDR Technology

1990	Start R&D activities with Kansai Electric Power Company (KEPCO)
1991	Start a 2 ton per day pilot plant at KEPCO's Nanko Power station
1994	Development of proprietary hindered amine solvent "KS-1 [®] " and "KM CDR Process [®] " with KEPCO
1999	First commercial plant in Malaysia (200 ton per day, to enhance urea synthesis from the CO ₂ recovered from a reformer flue gas)
2002	Start a pilot test for coal-fired power plant at MHI's Hiroshima R&D center
2003	High energy efficiency - Development of proprietary energy efficient process "Improved KM CDR Process"
2008	First commercial plant in Middle east (400 ton per day) which "Improved KM CDR Process" applied
2011	World's first - Started 500 ton per day fully integrated CCS demonstration plant with Southern Company for a coal-fired power plant at Alabama Power's James M. Barry Electric Generating Plant
Dec-2016	World's Largest - a CO2 Capture & Compression plant of 4,776 ton per day for EOR developed by NRG Energy Inc. and JX Nippon Oil & Gas Exploration Corporation has been under an operation.

KM CDR Process[™] – Features and Advantages

- ✓ KM CDR Process[™] <u>Kansai Mitsubishi Carbon Dioxide Removal</u>
 Jointly Developed by MHI Engineering & Kansai Electric Power Company (KEPCO)
- ✓ World's most advanced R&D programs commenced in 1990 and ongoing
- ✓ Proprietary hindered amine solvent "KS-1[™]" with accompanying proprietary system
 - KS-1[™] solvent with low energy, low solvent degradation & Negligible corrosion
 - Proprietary heat Recovering (High energy efficiency system)
 - Deep Amine emission Reduction system
 - Automatic Load Adjustment (ALAC) System

- ✓ Commercial proven & World's most energy efficient Flue gas CO₂ capture Technology
- Applicable for various flue gas sources such as
 Natural gas, Heavy oil, and Coal for variety of usages such as Urea, Methanol, General, and EOR.

ITSUBISHI HEAVY INDUSTR

Delivery Record of KM CDR Process[™]

World's largest delivery of CO₂ capture plant for over 100 tpd capacity;
 13 plants under commercial operation and 1 under construction

Commercial Plants of KM CDR Process[™]

World's leading large scale post-combustion CO₂ capture technology licensor 13 plants in operation and 1 under construction, from a variety of natural gas, heavy oil, and coal flue gas sources.

Commercial Plants of KM CDR Process[™]

- ✓ Commercialized since 1999
- ✓ Various flue gas sources: Natural gas, heavy oil, and coal
- ✓ CCUS has been the main driver of MHI's 14 commercial projects.

Year of Delivery	Country	Flue Gas Source	CO ₂ Capacity (TPD)	Application
1999	Malaysia	NG Fired Furnace	210	Urea Production
2005	Japan	NG and Heavy Oil Boiler	330	General Use
2006	India	NG Fired Furnace	450	Urea Production
2006	India	NG Fired Furnace	450	Urea Production
2009	India	NG Fired Furnace	450	Urea Production
2009	Bahrain	NG Fired Furnace	450	Urea Production
2010	UAE	NG Fired Furnace	400	Urea Production
2010	Vietnam	NG Fired Furnace	240	Urea Production
2011	Pakistan	NG Fired Furnace	340	Urea Production
2012	India	NG Fired Furnace	450	Urea Production
2014	Qatar	NG Fired Furnace	500	Methanol Production
2016	USA	Coal-Fired Boiler	4,776	Enhanced Oil Recovery
2017	Japan	Gas Fired Furnace	283	General Use
2021	Russia	NG Fired Furnace	1,200	Urea & melamine Production

2nd KM CDR Users Conference

- ✓ All users shared their own operation experiences.
- Improve their operation with each user.
- ✓ Incorporate lessen & Learned into KM CDR Process[™] technology

R&D Activities of KM CDR Process[™]

MITSUBISHI HEAVY INDUSTRIES

World's most advanced and comprehensive industrial R&D programs commenced in 1990 and ongoing

2002– 1 TPD Pilot Plant on Coal Exhaust/Simulated gas (MHI R&D Center)

2006 – 2008 J-Power Matsushima Pilot Plant using coal-fired flue gas (10 TPD)

Nanko Pilot Plant using natural gas-fired flue gas from Kansai Electric Power Plant (2 TPD)

1991-

Engineering HQ (Yokohama)

2008 – Large-scale rectangular CO₂ absorber test (MHI Mihara)

Approach from R&D to Full-scale Commercial Plant

MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES

✓ CCUS

- Urea
- Methanol
- General use (Beverage, Dry ice, Welding, etc)
- EOR (Enhanced Oil Recovery)
- Soda Ash
- GTL

 ✓ In natural gas based ammonia and urea plants, CO₂ is recovered from the reformer burner flue gas and used for urea synthesis

13

MITSUBISHI HEAVY INDUSTRIES ENGINEERING Methanol production is enhanced by adding external CO₂ that is

captured from the reformer burner flue gas

 \checkmark Optimize CO & H₂ ratio for Methanol synthesis

Reformer : $CH_4 + H_2O \Leftrightarrow CO + 3H_2$ MeOH synthesis: $CO + 2H_2 \Leftrightarrow CH_3OH$

 \checkmark

14

MITSUBISHI HEAVY INDUSTRIES

ENGINEERING

Enhanced Oil Recovery is main driver for major North American CCUS projects

CO₂ supply chain

- Fossil-fuel Power Plant
 CO₂ is created from combustion
- Capture System
 CO₂ is separated and compressed
- Pipeline
 CO₂ is transported to oil field

4) Oil Field

CO₂ is injected and recycled for oil production

*Ref: NRG Fact Sheet: Carbon capture and enhanced oil recovery: http://www.nrg.com/documents/business/generation/581409-factsheet-petra-nova-carbon-capture-final.pdf

- ✓ Part of a start-to-finish CCS project
- ✓ Executed by Southern Company Services (SCS) and MHI Engineering collaboratively

				Plant location	Alabama, US
	Absorber			Plant owner	Southern Company subsidiary Alabama Power
Flue Gas				CO ₂ Capacity	500TPD (25 MW _{eq})
Quencher		Regenerator		CO ₂ conc.	10.1 mol%-wet
			CO ₂ compression & Dehydration unit	CO ₂ removal	90%
		P P PIN		CO ₂ use	Geological storage
				Operating data a	s of 8/31/2014
CAN I LAND				Operating time	12,400 hrs
Elue gas inlet				Captured CO ₂	230,100 tonne
Hue gas met		*		Injected CO ₂	115,500 tonne
	400				

2018 Mitsubishi Heavy Industries Engineering, Ltd. All Rights Reserved.

CONFIDENTIAL

Fully integrated CO₂ capture, transportation, and storage

- Southeast Regional Carbon Sequestration Partnership (SECARB) Phase 3 "Anthropogenic Test" injecting man-made CO₂ from Plant Barry
- ✓ 12 miles CO₂ pipeline to the injection unit
- ✓ CO₂ injection into ~3km deep saline formation
- Monitoring of CO₂ storage during injection and 3 years post-injection

MOVE THE WORLD FORW>RD

Petra Nova Project: Overview

- The world's largest CO₂ capture plant on coal-fired flue gas has been under commercial operation since December 2016.
- Supported by DOE grant program (CCPI Round 3) and Japanese government finance (JBIC / NEXI)

Plant location	NRG WA Parish Power Plant (Thompsons, TX)
Project owner	Petra Nova – partnership between NRG Energy and JX Nippon Oil & Gas
Plant scale	240 MW _{eq}
CO ₂ capacity	4,776 TPD (1.4 MMtonne/year)
CO ₂ conc.	11.5 mol%-wet
CO ₂ removal	90%

CO ₂ Used for CO ₂ -EOR				
Pipeline	12 in diameter, ~81 miles			
Injection Site	West Ranch Oil Field			

*U.S. Department of Energy "W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Final Environmental Impact Statement Volume I" (Feb, 2013), DOE/EIS-0473

\checkmark CO₂ Captured for Enhanced Oil Recovery (EOR)

- Compressed CO₂ is delivered via an 81 mile CO₂ pipeline to the West Ranch oil field.
- Up to 1.4 million tonnes of CO₂ is annually injected into the West Ranch formation.

Proposed CO₂ Pipeline Route

"NRG Energy, JX Nippon complete world's largest post-combustion carbon capture facility on-budget and on-schedule"- selected Plant of the Year by Power Magazine

Financial Times

World's biggest carbon capture project on schedule

Petra Nova covers its costs by using the gas it captures for oil production

NRG Energy, JX Nippon Complete World's Largest Post-Combustion Carbon Capture 08/0 Facility On-Budget and On-Schedule

-Part of NRG Energy's overall fossil fuel decarbonization strategy-

Power Magazine

Capturing Carbon and Seizing Innovation: Petra Nova Is POWER's Plant of the Year

08/01/2017 | POWER

Save to myPOWER

Search

Coal-fired plant in Utah. It is hoped carbon capture technology can be used at coal-fired plants © Getty

Ed Crooks in New York JANUARY 11, 2017

The world's largest project capturing carbon dioxide emissions from power generation has come into service in the US on time and on budget, pointing the way towards a potentially viable future for the technology as a way to curb greenhouse gas emissions.

Striben-foot dismeter ductiver takes flue gas from the cost plant to the carbon caption facility where the CO2 is removed from the flue gas by the amine solution in the fail assorption tower and then separated from the amine as 39.9% pue CO2 in the smaller regenerator tower to the right before being compressed and defunction to the difficult submass Wire)

January 10, 2017 01:00 AM Eastern Standard Time

HOUSTON & TOKYO-(BUSINEESS WIRE)-NRG Energy, Inc. (NYSE:NRG) and JX Neppon OII & Gas Exploration Corporation (JX Nippon) have completed construction, on-budget and on-schedule, of Petra Nova, the world's largest post-combusion carbon capture system.

#PetraNova, world's largest post combustion carbon capture system, is online and capturing CO2 from a coal plant.

Tweet this

*Completion of the Petra Nova project is an important milestone in our queet to help ensure netable. Britosable and increasingly desare reargery from tosall project represents another major step in NRG's entrol or HRG Energy. "This project represents another major step in NRG's entrol to reduce our carbon emissions and oreake a more sustamable energy future, and we are prood that this accompletiment was achieved on-oudget and on-schedule in a competitive energy environment. I wart to thank our planmers at JX Nigoro, Hildorp and the

U.S. Department of Energy as well as the State of Texas, our contractors and lenders for their commitment to the successful completion of this landmark project."

Courtesy: Kiewit

Winning POWER's highest honor, the U.S.'s first and world's largest commercial post-combustion carbon capture system at a power plant is distinctively both a glabally significant environmental breakthrough and a trailblazing revenue-generating facility. Putting this \$1 billion project online on time and on budget—despite a chaotic policy climate and other challenges that sank similar projects—was a top priority for its investor-owned owners and project partners.

MOVE THE WORLD FORW>RD

MITSUBISHI HEAVY INDUSTRIES GROUP

- World's largest delivery of CO2 Capture Plant for over 100 tpd capacity;
 13 plants under commercial operation and 1 under construction
- 2. Commercially applied since 1999 to a variety flue gas sources of Natural gas, heavy oil, and coal for variety of CCUS; such as Urea, Methanol, EOR and other General usage.
- 3. World's largest operating post combustion CO2 capture plant (4,776 tpd) since 2016
- The 'Complete Solution' Proprietary hindered amine solvent "KS-1[™]" with accompanying proprietary equipment
- 5. World's most energy efficient Post Combustion Process Reducing CAPEX & OPEX
- World's most advanced and comprehensive industrial R&D programs commenced in 1990 and ongoing
- 7. Applicable to large commercial power, biomass plants or other large combustion plants

SUBISHI HEAVY INDUSTRIE

GINEERING

MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES

Ongoing Effort by MHI Engineering;

- Reduction of CO₂ capturing cost (CAPEX&OPEX) through Technical Improvement
 - Increasing efficiency
 - Preventing solvent degradation

DOE/NETL CO₂ Cost Goal 2020 2nd Generation: \$40/ton 2025 Transformational: Less than \$40/ton

Suggestions to expand CCS and reduce carbon footprint;

- ✓ Encourage the construction of CO₂ Capture Plant and associated facility through various incentives or subsidy system, in order to decrease the CO₂ capturing cost through scale up economics and learning curve.
- Prepare CO₂ pipeline and sequestration as social infrastructure, in order to decrease the uncertainty after capturing CO₂.
- ✓ Provide matching opportunities among various stakeholders.

MOVE THE WORLD FORW>RD

MITSUBISHI HEAVY INDUSTRIES GROUP

Thank you

Further Question Takashi Kamijo <takashi_kamijo@mhi.co.jp>