
Global Carbon Dioxide Storage Resource Assessments

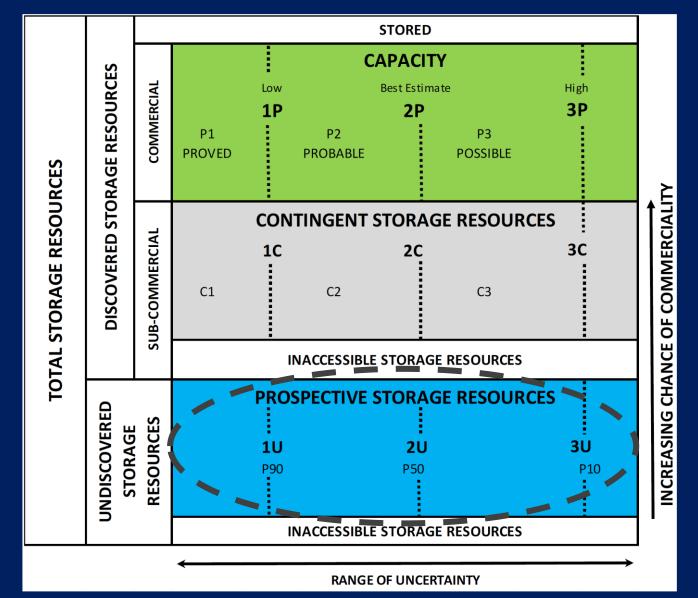
Carbon Sequestration Leadership Forum - Technical Group Virtual Meeting 8 December 2021

Sean T. Brennan and Peter D. Warwick

U.S. Department of the Interior U.S. Geological Survey

Identification of Priority Regions/Countries of Interest

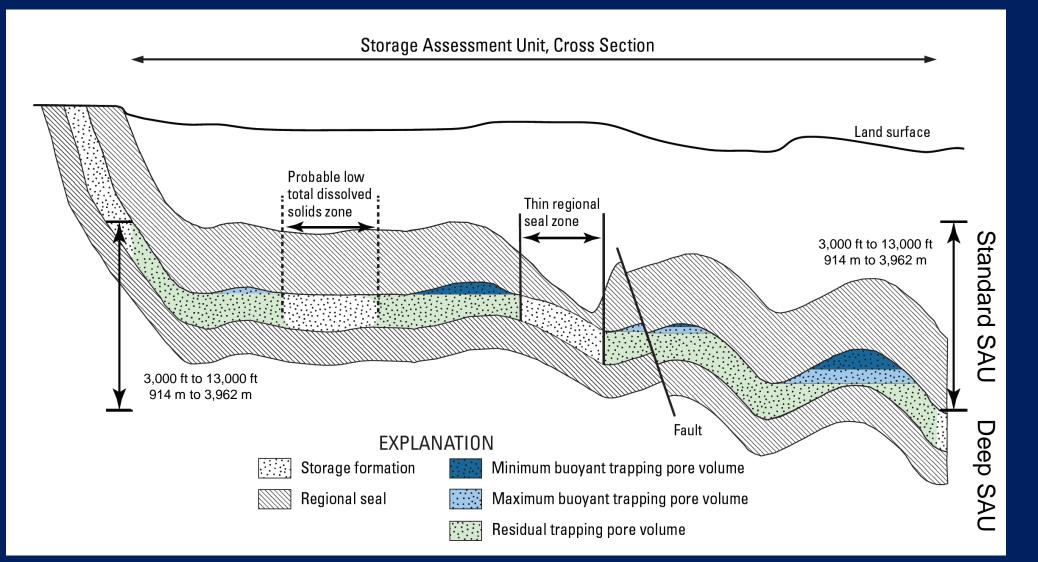
Geographical coverage of the status of storage resource assessments


Consoli and Wildgust (2017, https://doi.org/10.1016/j.egypro.2017.03.1866; Global CCS Institute)

Project Goals

- Identify countries, with an emphasis on emerging economies, that are interested to work towards estimating their CO₂ storage resources to meet their climate goals;
- Work with multilateral organizations and international initiatives related to assessments of global geologic CO₂ storage resources; and
- Generate or facilitate CO₂ storage assessments internationally, with an emphasis on emerging economies.

Storage Resource Management System



https://www.spe.org/en/ind ustry/co2-storage-resourcesmanagement-system/

Society of Petroleum Engineers (2017)

USGS Geologic model for a CO₂ storage assessment unit (SAU)

Salinity of water in storage formation must be > 10,000 mg/L total dissolved solids (U.S. Environmental Protection Agency, 2010)

Brennan and others (2010) Blondes and others (2013) 5

Phase 1: Prioritization and Data Collection

 Prioritize countries or regions that could benefit from CO₂ storage resource estimates and subsurface characterization.

- Determine the availability of relevant geologic data and identify data gaps in those countries or regions.
- Start to collect relevant data.

USGS Storage Assessment Unit Input Data Form

Characteristics of the Storage Assessment Unit

Lines 1-9 concern data for the SAU at depths of		3,000-13,000 ft	
			> 13,000 ft
(1) SAU depth from surface (ft):	minimum:	most likely:	maximum:
(2) Area of the SAU (acres):	minimum:	most likely:	maximum:
(3) Mean total SAU thickness (ft):	minimum:	most likely:	maximum:
(4) SAU water quality (check one):			
Most of the water in the SAU is s	aline (greater than 10	,000 mg/L TDS).	
Water in this SAU is both saline a	and fresh.		
Most of the water in the SAU is fi	resh (less than 10,000	mg/L TDS).	
(5) Area fraction available for storage (generally (6) Mean thickness net porous interval (ft):	minimum:	most likely: most likely:	maximum:
(7) Mean porosity net porous interval (fraction):	minimum:	most likely:	maximum:
Buoyan	t Trapping Probab	ilistic Calculation Inputs	
(8) Buoyant trapping pore volume (MMbbl):	minimum:	most likely:	maximum:
Residua	I Trapping Probat	oilistic Calculation Inputs	;
(9) Permeability of the net porous interval (mD):	minimum:	most likely:	maximum.

Brennan and others (2010)

Blondes and others (2013)

Phase 2: The Assessment

- The U.S. Geological Survey will facilitate focused CO₂ storage resource assessments by:
 - Doing the assessment with assistance from local geological staff;
 - Working directly with the local geological staff to do the assessment; or
 - Advising the local geological staff as they do the assessment;
- Training and assessment capacity building is integral to the effort.

Phase 3: Reporting

- Expected results include:
 - Publicly available reports of regional, country, or basin specific geologic CO₂ storage resources.
 - Publish accumulated non-proprietary data and derivative products of aggregated proprietary data.

For More Information

For more information on how to join this Global Carbon Dioxide Storage Resource Assessments collaborative effort, please contact:

Sean Brennan sbrennan@usgs.gov Peter Warwick pwarwick@usgs.gov

References Cited

Blondes, M.S., Brennan, S.T., Merrill, M.D., Buursink, M.L., Warwick, P.D., Cahan, S.M., Cook, T.A., Corum, M.D., Craddock, W.H., DeVera, C.A., Drake, R.M., II, Drew, L.J., Freeman, P.A., Lohr, C.D., Olea, R.A., Roberts-Ashby, T.L., Slucher, E.R., and Varela, B.A., 2013, National assessment of geologic carbon dioxide storage resources—Methodology implementation: U.S. Geological Survey Open-File Report 2013–1055, 26 p., available at https://pubs.usgs.gov/of/2013/1055/.

Brennan, S.T., Burruss, R.C., Merrill, M.D., Freeman, P.A., and Ruppert, L.F., 2010, A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage: U.S. Geological Survey Open-File Report 2010–1127, 31 p., available at https://pubs.usgs.gov/of/2010/1127.

U.S. Environmental Protection Agency, 2010, Final rule for Federal requirements under the underground injection control (UIC) program for carbon dioxide (CO2) geologic sequestration (GS) wells): Washington, D.C., U.S. Environmental Protection Agency Web site, available at http://water.epa.gov/type/groundwater/uic/class6/gsregulations.cfm.

U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a, National assessment of geologic carbon dioxide storage resources—Data: U.S. Geological Survey Data Series 774, 13 p., plus 2 appendixes and 2 large tables in separate files, https://pubs.usgs.gov/ds/774/.

U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013b, National assessment of geologic carbon dioxide storage resources—Results: U.S. Geological Survey Circular 1386, 41 p., https://pubs.usgs.gov/circ/1386/.

U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013c, National assessment of geologic carbon dioxide storage resources—Summary: U.S. Geological Survey Fact Sheet 2013–3020, 6 p., https://pubs.usgs.gov/fs/2013/3020/.

