Overview of the IEA GHG Weyburn-Midale CO₂ Monitoring and Storage Project

3rd CSLF Workshop on Capacity Building for Carbon Capture and Storage (CCS)

> Al-Khobar, Saudi Arabia 26-30 January 2008

Frank Mourits Project Integrator Natural Resources Canada

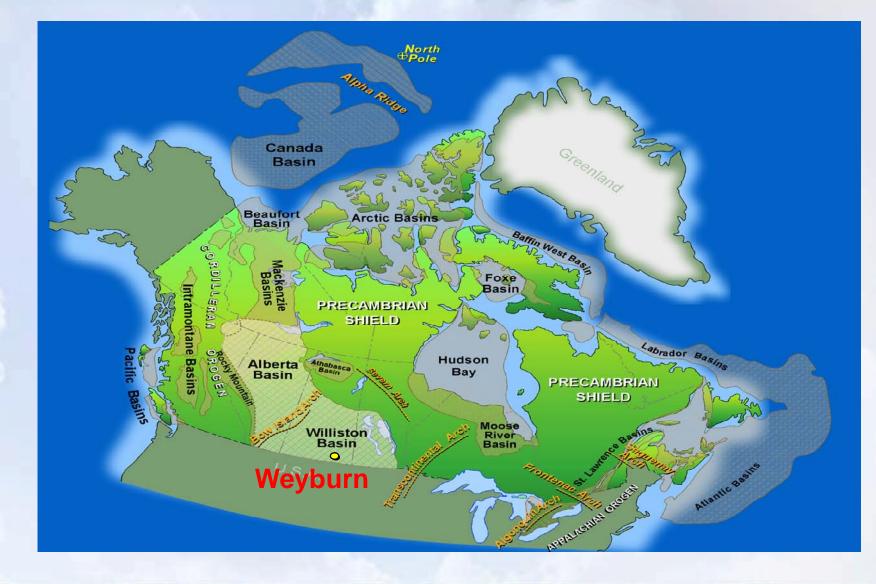
I E A G H G WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

IEA GHO WEYBURN-MIDALE DD& MONITORING AND ETGRASE PROJECT

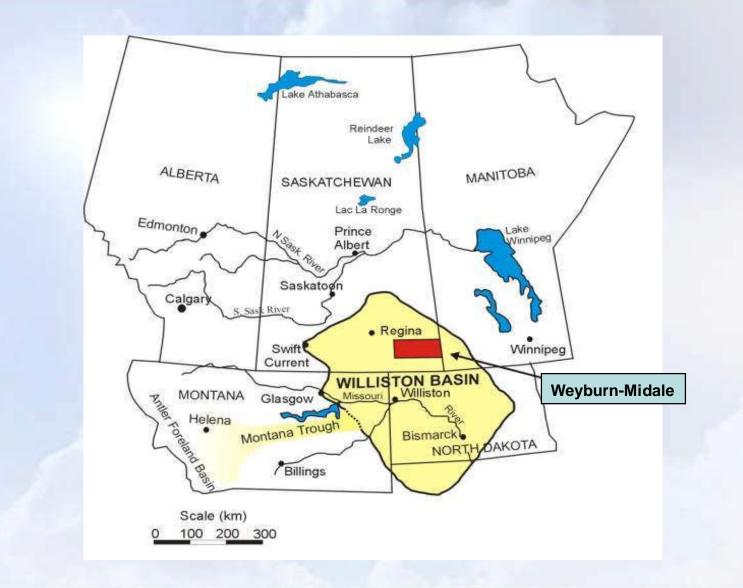
Outline of this presentation

- Encana Weyburn and Apache Midale Commercial EOR Operations
- IEA GHG Weyburn CO₂ Monitoring and Storage Project: Overview and Results of Phase I (2000-2004)
- IEA GHG Weyburn-Midale CO₂ Monitoring and Storage Project : Final Phase (2007-2010)

IEA GHO Weyeurh-Midale CO2 Monitoring and Storage Project


Encana Weyburn and Apache Midale Commercial EOR Operations

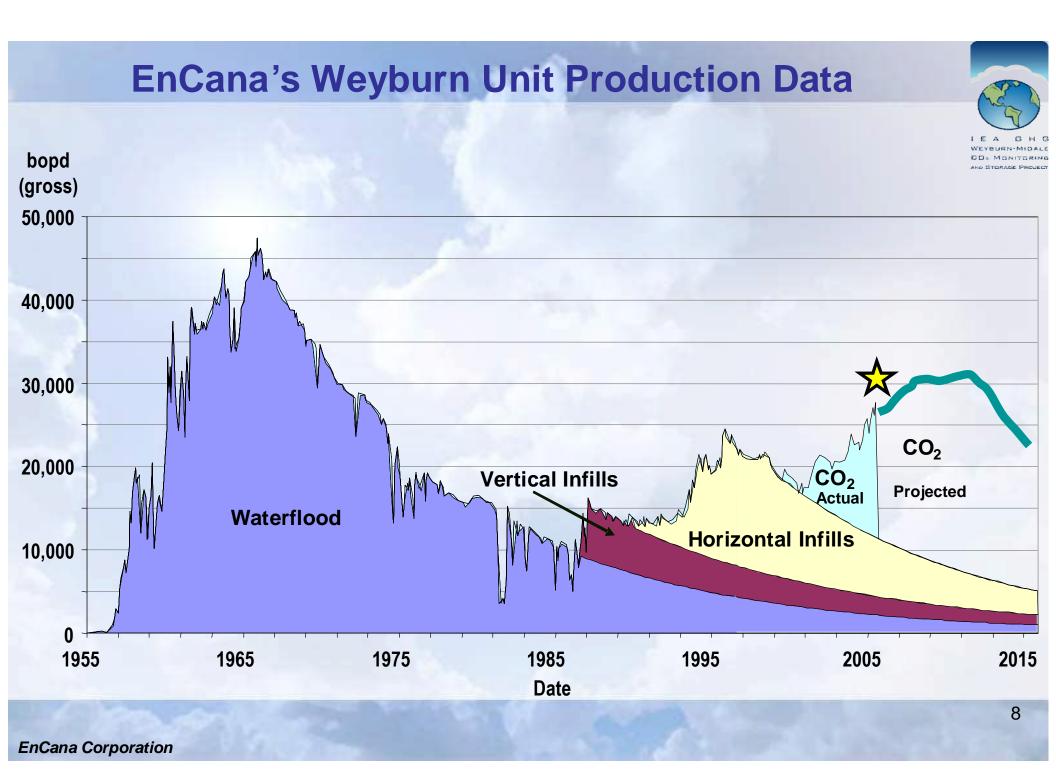
Location of the Weyburn-Midale CO₂ Project


IEA SHG WEYBURN-MIDALE DE MONITORING AND STORAGE PROJECT

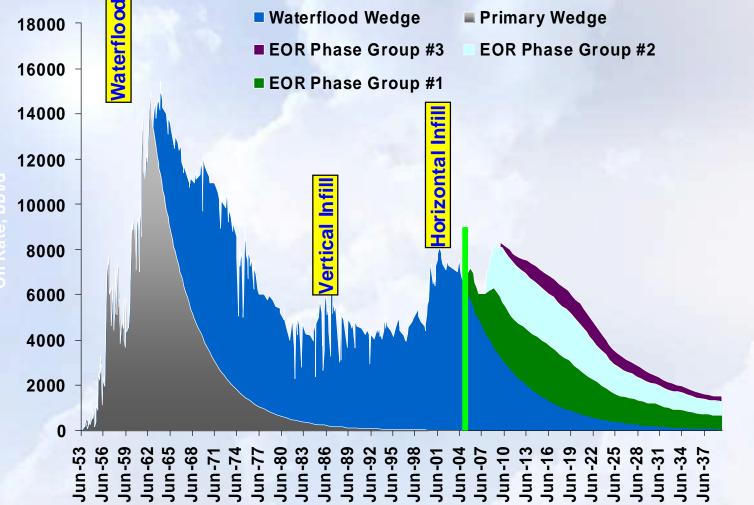
Location of the Weyburn-Midale CO₂ Project

I E A G H G WEYSURN-MIDALE DD: MONITORING AND STORAGE PROJECT

Weyburn and Midale Oilfield Characteristics


	Weyburn (<i>EnCana)</i>	Midale (<i>Apache</i>)
Field Size	180 km ²	104 km ²
Depth	1500 m	1500 m
Gross Pay / Net Pay	25 / 7.8 m	22 / 7.5 m
Zone Porosity	Marley Dolomite zone: 26% ; Vuggy Limestone zone:15%	
Average Porosity	17.2%	16.3%
Zone Permeability	Marley Dolomite zone: 10 mD ; Vuggy Limestone zone: 30 mD	
Average Water Saturation	31.7%	16.3%
Average Oil gravity	29.3 API (880 kg/m ³)	29.8 API (877 kg/m ³)
Minimum miscibility pressure	14 -16 MPa (2030 - 2320 psi)	
Original oil in place	1.4 billion bbl	515 million bbl
Oil recovery pre-EOR (primary, waterflood, infill)	370 millions bbl (26.4% OOIP)	154 million bbl (25.4% OOIP)
Number of injector wells	n/a	60 – 70, in <mark>c</mark> l. 10 CO ₂
Number of producing wells	360 (in EOR area)	270 (total field)

Weyburn and Midale Operating Statistics



	Weyburn (<i>EnCana)</i>	Midale (<i>Apache</i>)
Start of CO ₂ injection / duration	2000 / 30 years	2005 /30 years
Injection pressure	10 - 11 MPa (1450 - 1600 psi)	
Injection of source CO ₂ Recycle of CO ₂ & produced gas	6,500 t/d (125 MMscf/d) 60 MMscf/d	1,300 t/d (25 MMscf/d) 6 – 8 MMscf/d
Annual amount of source CO ₂ injected	2.4 million tonnes	474,000 tonnes
Total amount source CO ₂ injected to date	9.5 million tonnes (Feb 2007)	n/a
Incremental oil production	18,000 b/d for EOR area 30,600 b/d for total unit	n/a
Projected total incremental oil recovery due to CO ₂	155 million barrels	60 million barrels (17% OOIP)
CO ₂ utilization factor	3 - 4 Mcf/b	2.3 Mcf/b
Projected amount of CO ₂ stored at project completion	30+ million tonnes* (gross) 26+ million tonnes (net)	10+ million tonnes* (gross) 8.5+ million tonnes (net)
Total capital cost of EOR project	CAD\$1 billion	CAD\$95 million

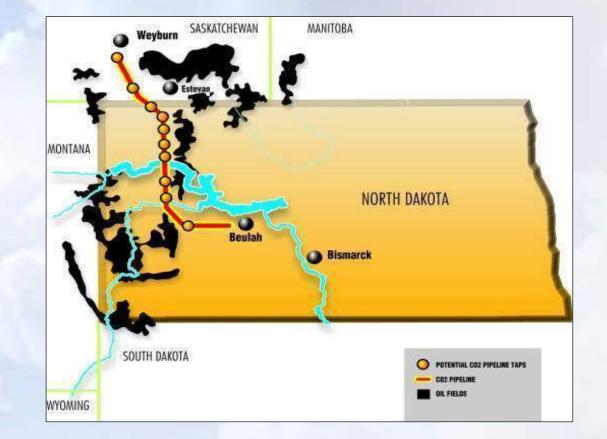
* Equivalent to removing more than 8 million cars off the road for a year

Apache's Midale Unit Production Data WEYEURN-MIDALS ECS- MONITORING AND STURAGE PROJECT

GHG

Source of CO₂

I E A G H G Weyburn-Midale CG & Monitoring and Storage Project


Dakota Gasification Company, Beulah, North Dakota, U.S.A.:

• Produces 13,000 tonnes/d of CO_2 as by-product of lignite coal gasification, of which 8,000 t/d is available for EOR

• CO₂ purity is 95% (less than 2% H₂S); trace mercaptans

 5000 t/d contracted and transported through 320-km pipeline to Weyburn oilfield

• Pressure is 1000 psi (68 atm/ 6.9 MP/68.9 bar)

I E A G H G WEYBURN-MIDALE DD: MONITORING AND ETGRAGE PROJECT

IEA GHG Weyburn CO2 Monitoring and Storage Project: Overview and Results of Phase I (2000-2004)

Phase I: 2000-2004

Objectives

- to predict and verify the ability of oil reservoirs to securely and economically contain CO₂ through a comprehensive analysis of various methodologies
- to develop monitoring and modeling methods to address the longterm migration and fate of CO₂

To address these objectives, Phase I was organized along 4 main "themes", which comprised over 50 separate research subtasks:

- 1. Geological characterization of geosphere and biosphere
- 2. Prediction, monitoring and verification of CO₂ movements
- 3. CO₂ storage capacity and distribution predictions and the application of conformance control treatments
- 4. Long-term risk assessments of the storage site

COV MONTONIA CONTRACTOR

Phase | Partners

WEYBURN-MIDALS EDS MONITORING NE STORAGE PROJECT

Government Sponsors \$18 million

- Natural Resources Canada
- United States Dept. of Energy
- European Commission
- IEA GHG R&D Programme
- Saskatchewan Industry and Resources
- Alberta Energy Research Institute

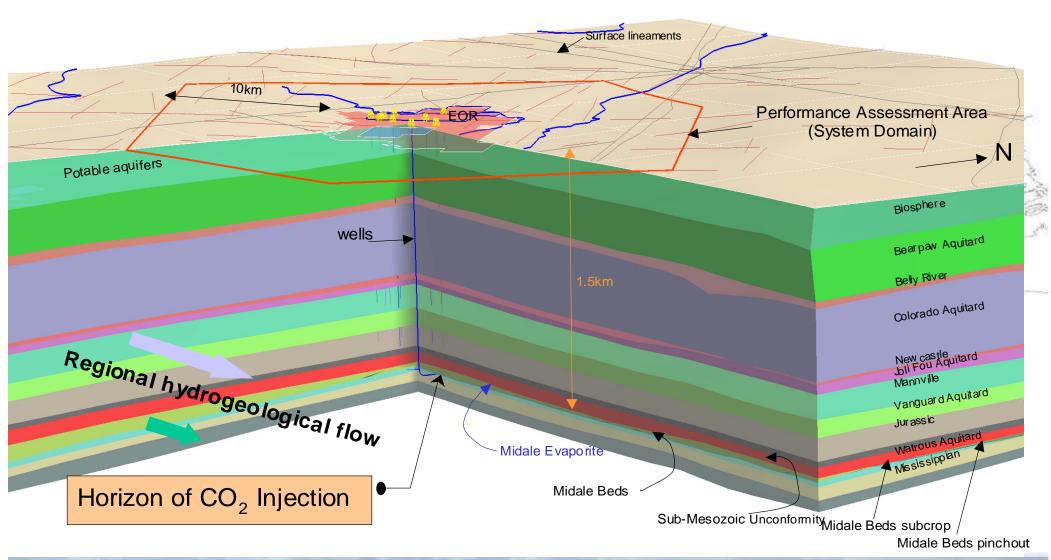
- EnCana
- BP
- ChevronTexaco
- Dakota Gasification Co.
- RITE (Engineering Adv. Association of Japan)
- Nexen
- SaskPower
- Total
- TransAlta

etroleum Technology

Research Centre

- Saskatchewan Research Council (SRC)
- Alberta Research Council (ARC)
- Canadian Energy Research Institute (CERI)
 University of Regina (U of R)
- ECOMatters (ECOM)
- GEDCO Inc. (GEDCO)
- Geological Survey of Canada (GSC)
- Hampson Russell (HR)
- J.D. Mollard and Associates Ltd. (JDMA)

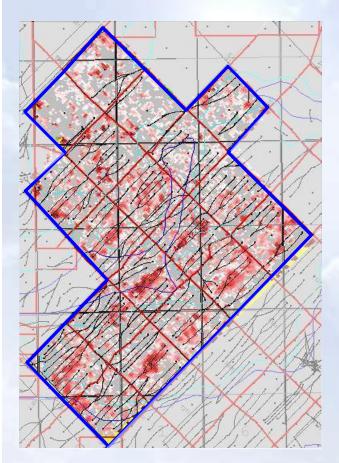
- Rakhit Petroleum Consulting Ltd. (RPCL)
- University of Saskatchewan (U of S)
- University of Alberta (U of A)
- University of Calgary (U of C)

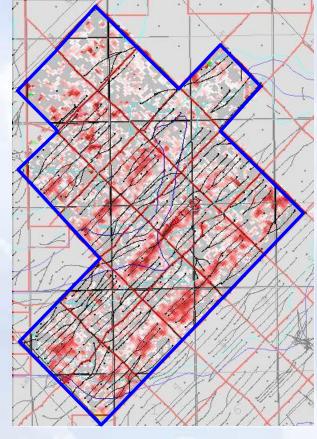


- Colorado School of Mines, Golden, CO (CSM)
- Lawrence Berkeley National Laboratories, Berkeley, CA (LBNL)
- Monitor Scientific Corporation International, Denver, CO (MSCI)
- North Dakota Geological Survey (NDGS)

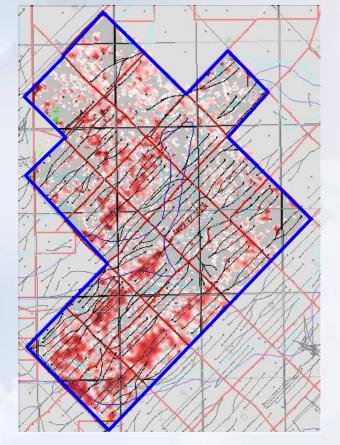
- British Geological Survey, Britain Bureau de Recherches Geologiques et Minieres, France (BRGM)
- Geological Survey of Denmark and Greenland (GEUS)
- Istituto Nazionale di Geofisica e Vulcanologia Quintessa Ltd. (INGV)
- Quintessa

Project Location and Study Areas





Source: Saskatchewan Geological Survey; University of Alberta


Tracking CO₂ Movement

Seismic Surveys (Baseline to 2004) - Phase 1a

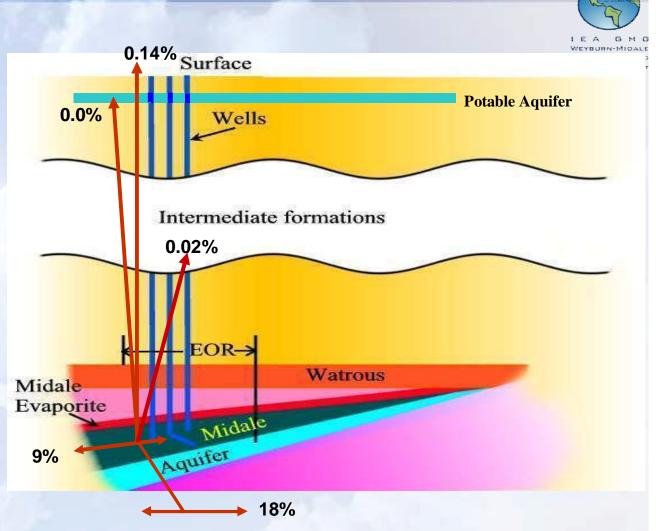
Baseline - 2002

Baseline - 2004

Baseline - 2001

EnCana Corporation

WEYBURN-MIDALE CO.: MONITORING AND STORAGE PROJECT


Phase I Results: Risk Assessment

Geological "container" at Weyburn is very effective:

- Primary carbonate and secondary shale seals are highly competent
- There is hydraulic separation and no fluid flow between adjacent aquifers

Initial simulation results indicate that after 5000 years over 98% of the initial CO₂ in place will remain stored:

- More sophisticated simulation work is required
- Risk management practices need to be developed

After 5000 years, 27% of $\rm CO_2$ moved outside EOR area, but remained within study area

IEA GHG WEYBURN-MIDALE CO2 MONITORING AND STURAGE PROJECT

IEA GHG Weyburn-Midale CO₂ Monitoring and Storage Project

The Final Phase

Why pursue a Final Phase project?

Issues to be Addressed

Technical

- Unfinished work ("gaps") from Phase I
- Gaps identified by IPPC (Special Report on CCS, 2005)

Non-Technical / Policy

Favourable regulatory regime

- Site selection
- Operations
- Abandonment / post-abandonment
- Orphaned sites

Public understanding and acceptance

Facilitating fiscal policy regime

- Value placed on stored CO₂
- Credit trading mechanisms
- Financial / fiscal incentives

Outcomes Sought

- Technical knowledge transferred to enable widespread deployment
- Solid technical basis established for policy development
- Storage security
- Risk management
- Long-term liability
- Verifiable GHG reductions
- Public health and safety
- License to operate
- Sources-to-sinks infrastructure
- Widespread use
- Deep GHG cuts

Final Phase Objectives

IEA GHG WEYBURN-MIDAUS GDs MONITORING and Storage Project

Best Practices Manual

 \succ Will guide all aspects of future CO₂ EOR storage projects

[Integration]

Technical Components (90% of budget)

- 1. Site Characterization / Selection
- 2. Wellbore Integrity
- 3. Monitoring and Verification
- 4. Risk Assessment

Non-Tech Components (10% of budget)

- 1. Regulatory Issues
- 2. Public Communication and Outreach
- 3. Business Environment / Fiscal Policy

Final Phase: Partners to Date

Government Sponsors

- Natural Resources Canada
- United States Dept. of Energy
- IEA GHG R&D Programme
- Saskatchewan Industry and Resources
- Alberta Energy Research Institute
- RITE (Research Institute of Innovative Technology for the Earth)

Industry Sponsors

- Apache
- EnCana
- Chevron
- OMV Austria
- Aramco Services Co
- SaskPower.
- Schlumberger
- Shell

Research Organizations

- Alberta Research Council (ARC)
- Canadian Light Source Synchrotron
- ECOMatters (ECOM)
- Geological Survey of Canada (GSC)
- Permedia Group
- Saskatchewan Research Council (SRC)

- T.L. Watson & Associates
- University of Regina (U of R)
- University of Sask. (U of S)
- University of Alberta (U of A)
- University of Calgary (U of C)
- URS Canada Inc.

- Fugro Seismic Imaging
- Lawrence Livermore National Laboratories

- 03
- University of Bristol UK
- International Energy Agency

IEA GHG WEYBURN-MIDALE DD: MONITORING AND ETGRAGE PROJECT

Final Phase – Technical Program

Theme 1 – Geological Integrity (Site Selection)

- develop firm protocols for site selection
- identify minimum data set required for successful site selection using full-cycle risk assessment
- integrate hydrogeological, geophysical, geological data sets to create complete picture of seal integrity
- further study leakage and storage integrity in natural analogues
- summarize impact of CO₂ on geochemical and geomechanical processes and regional reservoirs and seals

Theme 2 – Wellbore Integrity

- complete identifying essential parameters for well-bore integrity
- compile list of well remediation technologies that can be applied
- describe current well abandonment trends and how they may impact future abandonment requirements
- conduct cased-hole dynamic testing (look for pressures and mobile fluids that signal CO₂ migration out of the zone)
- document safe practices and effect on wellbore integrity and geomechanics

Final Phase – Technical Program

Theme 3 – Storage Monitoring Methods

- Characterize the accuracy of monitoring technologies for quantitative prediction of CO₂ location and volume
- determine if multi-year 4D seismic programs are an appropriate monitoring and verification requirement?
- determine CO₂ distribution through in-situ time-lapse well logging; spinner surveys; selective drilling, coring and logging of slim holes
- continue to explore passive seismic monitoring

Theme 4 – Risk Assessment and Storage Mechanisms

- complete full-field risk assessment from Phase 1
- determine risk levels for various storage optimization scenarios
- describe ultimate fate of CO₂, the relative volumes in each storage/ trapping mechanism, the time needed for trapping, and factors affecting these mechanisms
- Study ways for stimulating and accelerating CO₂ mineral fixation at reservoir conditions

EDS MCSNITCHERSES

Final Phase – Non-Technical Program

Public Communications and Outreach

- With stakeholders, develop a Communication Strategy based on the Weyburn-Midale experience and other major international CO₂ geological storage projects:
 - Identify and focus on issues of key interest to policy makers, regulators, investors and the local and national public
 - Communicate in the most appropriate manner the technical information from the Best Practices Manual and other relevant sources to these essentially non-technical audiences
 - Develop and/or participate in development of CCS educational materials
 - Launch the public communication process early
- Based on issues and feedback from stakeholders, revisit and revise the Best Practices Manual accordingly

E A G H C VEYBURN-MIDALS COx MONITORING NO STORAGE PROJECT

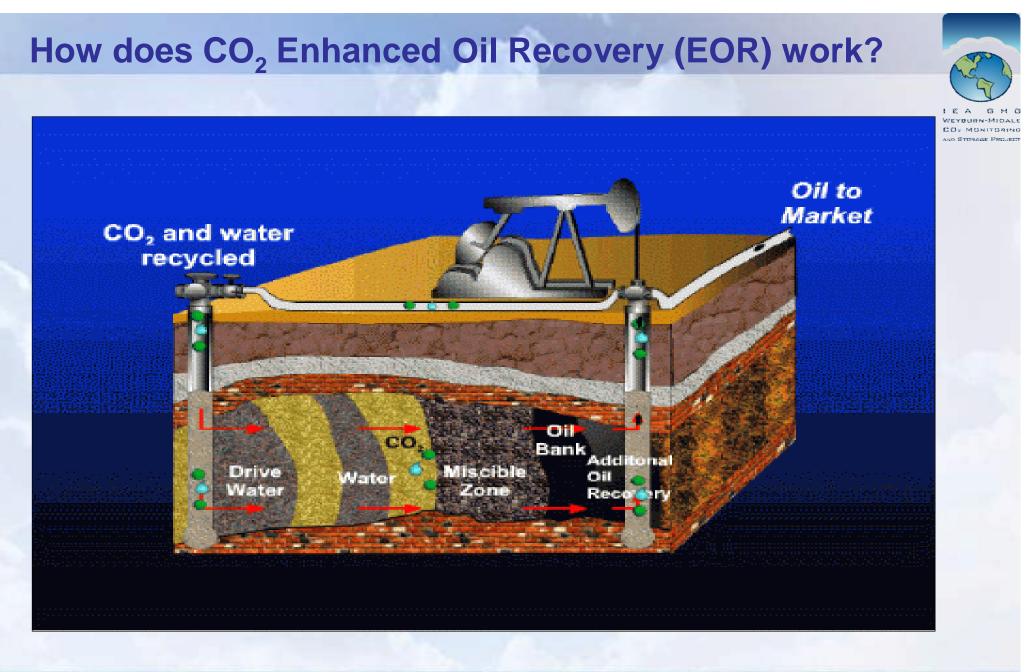
Overall Status of the Final Phase

- Continued financial support by governments for the Final Phase is confirmed: NRCan, US DOE/NETL, Japan, Saskatchewan and Alberta
- Sponsorship from industry is enhanced to include new participants from different sectors
- Total funding (cash and in-kind) is expected to be in the order of \$40 million, similar to that in Phase I
- Agreements with sponsors and research performers have been finalized or are currently being executed
- Budget envelopes (2007-2010) have been approved (90% technical; 10% policy)

ED: MONITORINO

Conclusions

- Based on preliminary Phase I results, the geological setting at Weyburn-Midale appears to be highly suitable for long-term CO₂ geological storage
- Project has arguably developed the most complete, comprehensive, peerreviewed data set in the world for CO₂ geological storage
- An international team of high-quality researchers has been established and strong international leadership has been demonstrated by Canada, the USA and the EU through continued financial and managerial support
- International credibility and recognition by the IEA GHG R&D Programme and the Carbon Sequestration Leadership Forum (CSLF) have been achieved
- The final product the Best Practices Manual will serve as practical technical guide for the design and implementation of EOR-type CO₂ storage, while accelerating the development of: (i) appropriate regulations for CO₂ storage; (ii) effective public consultation process; and (iii) public policy that provides effective incentives to ensure widespread deployment of long-term CCS



IEA GHG WEYBURN-MIDALE DD: MONITORING AND ETGRAGE PROJECT

Thank you for your attention! Any Questions?

For more information, email <u>fmourits@nrcan.gc.ca</u>

Dr. Frank Mourits Natural Resources Canada Ottawa, Canada +1-613-947-3482

