CARBON DIOXIDE CAPTURE & STORAGE

RESEARCH DEVELOPMENT & DEMONSTRATION IN AUSTRALIA

A Technology Roadmap 2004

Peter J Cook
Chief Executive

Cooperative Research Centre for Greenhouse Gas Technologies, Canberra, Australia

What is a Technology Roadmap?

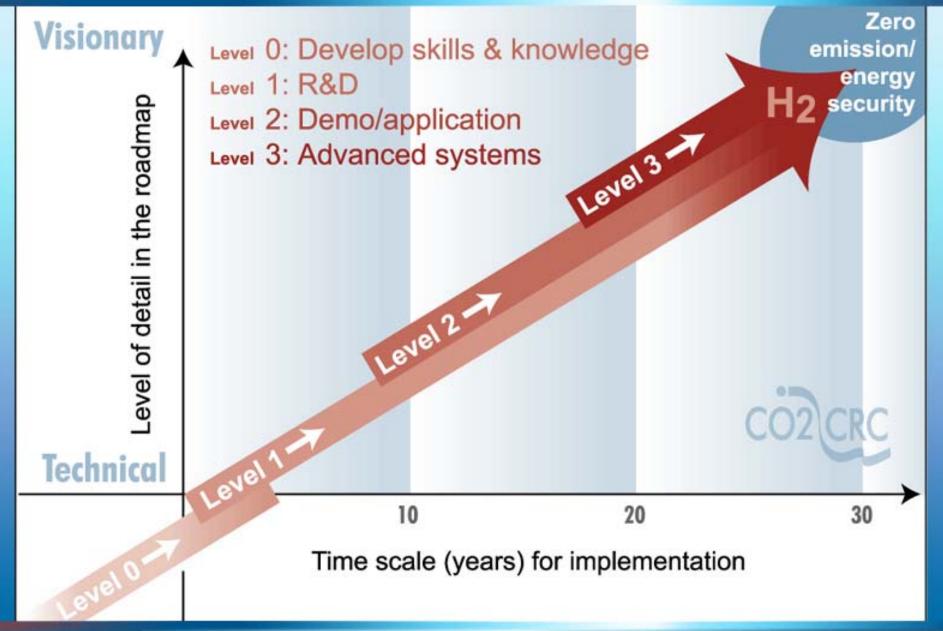
"Technology roadmaps identify, evaluate and promote the development of collaborative projects within and between industries to fill technology gaps and/or capture technology related opportunities." (Scheer 2001)

- "Technology Roadmapping identifies future product, service and technology needs for industry sectors and evaluates and selects technology alternatives." (AusIndustry 2003)
- "Technology Roadmaps can contribute to the policy aims of Government." (DIST 2001)

Australia's CO₂ capture and storage technology roadmap...

- is provided as an example of the way in which Australian stakeholders and researchers went about establishing CCS priorities.
- will shape Australia's major RD&D direction over the next few years, but will also be regularly revisited in the light of Australia's evolving needs and international trends.
- is not a definitive text on how to produce a technology roadmap nor is it a formal policy paper outlining what Australia will do in CCS over the next 30 years.

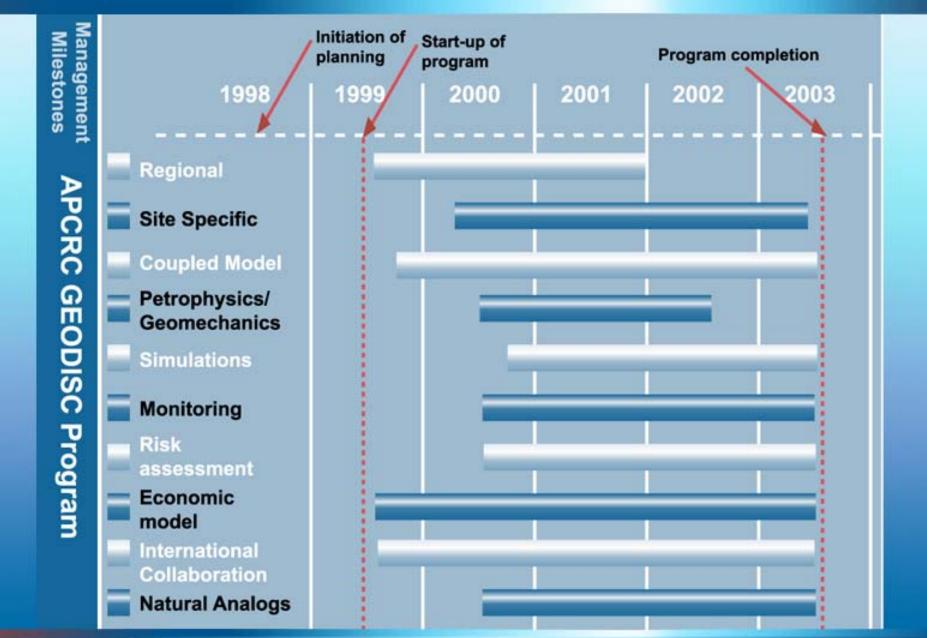
The Australian CCS Technology Roadmap has identified...


- Areas of technology strength
- Areas of technology weakness
- R&D that is of critical importance to Australia
- R&D that will be pursued
- R&D where a watching brief will be maintained
- R&D where it will seek to collaborate internationally

THE STAGES OF ROADMAPPING CO₂ capture & storage

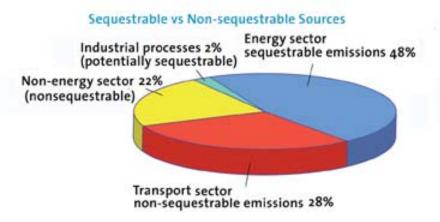
- Preliminary activities (Level O)
- Technology roadmap (Level 1) the "focus"
- CO₂ capture & storage technology application roadmap (Level 2)
- CO₂ capture & storage roadmap to the hydrogen economy (Level 3)

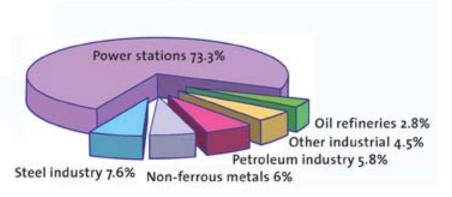
Schema for the Australian CCS Technology Roadmap illustrating the four levels of mapping related to degree of detail and timing and commercialisation.

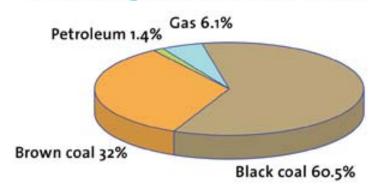


Preliminary activities (Level O)

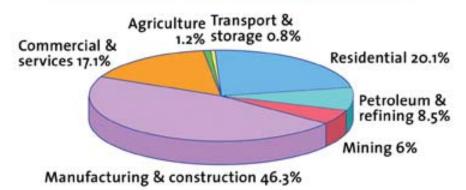
- Australia's CO₂ Emissions
- GEODISC
- CO2CRC



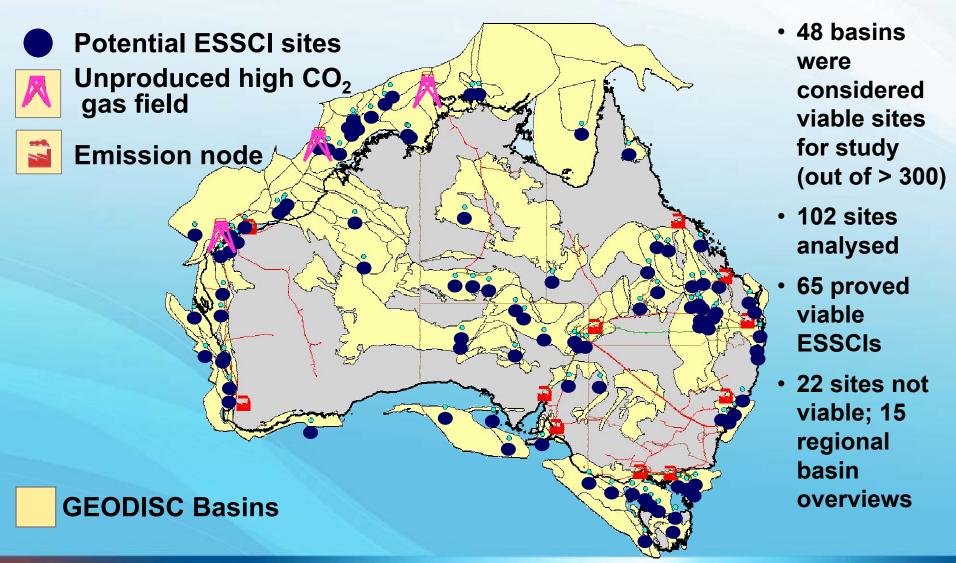




All Sequestrable Sources



Sources of CO₂ Emissions from Power Stations



CO₂ source-sink studies (after Bradshaw et al)

Preliminary gap analysis & technology assessment showed:

- Technology options for limiting CO₂ emissions are seen as increasingly important by industry and government.
- Any technology solution must embrace need to use fossil fuels for the foreseeable future.
- Cost of CO₂ capture must decrease considerably
- Australian emissions represent challenges & opportunities.
- Australia is geologically favourable
- A need to establish new collaborative links and funding –
 CO2CRC was the preferred route.

The strategy adopted for CO2CRC was to:

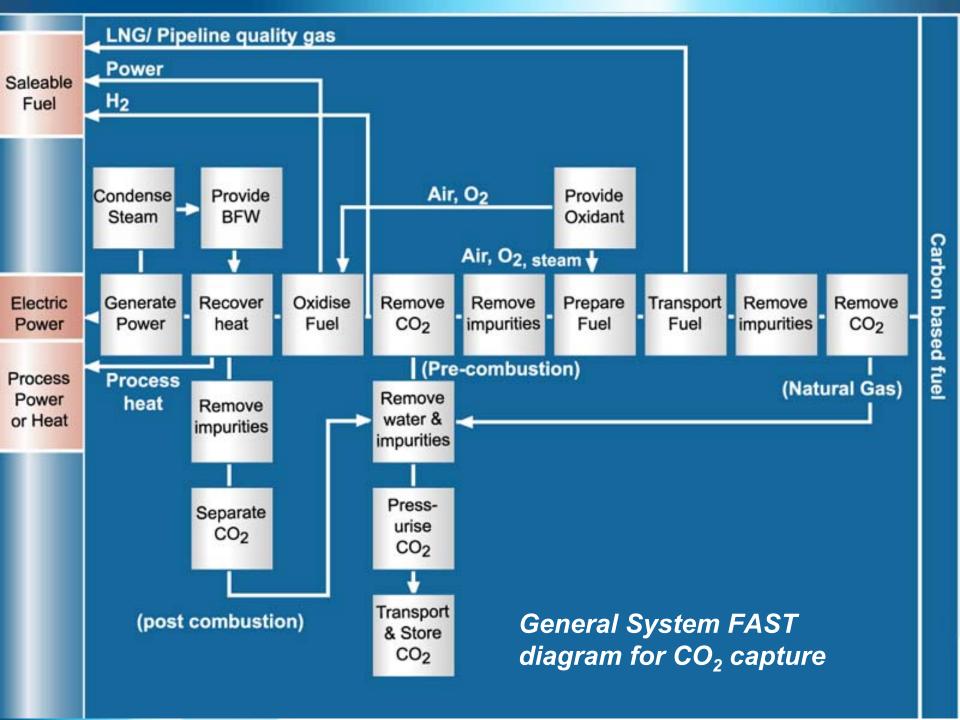
- Assemble an outstanding multi-disciplinary-interdisciplinary team of technology based researchers to work with industry, whilst ensuring integration of socio-economic issues
- Take a 'whole of industry' approach to CO₂ encompassing a variety of emissions from a range of sources.
- Work with leading national and international research teams to maximize technology transfer and research leverage.
- Focus on identification, development and application of the most cost-effective system(s) for capture of CO₂ from major stationary sources.

Vision of CO2CRC

The <u>VISION</u> is to develop cost effective carbon capture and storage technologies through collaborative research, that will help Australia decrease CO₂ emissions to the atmosphere from major stationary CO₂ sources, whilst continuing to derive benefit from its abundant fossil fuels and existing industrial base.

Technology roadmap (Level 1)

- Roadmapping process
- CO₂ capture roadmap
 - Technology themes
 - Australian perspective
 - Implications for capture R&D
 - Implications for CO2CRC capture program
- CO₂ Storage roadmap
 - Technology themes
 - Technology prioritization
 - Implications for storage R&D
 - CO2CRC Storage program



Methodology

The Level 1 Technology Roadmap used both a Functional Analysis System Technique (FAST) and a 3rd generation R&D approach to ensure that all opportunities were identified, and that they:

- are realistic and timely
- utilize the Australian skill base
- take into account research activities elsewhere in the world
- are effectively incorporated into the CO2CRC program
- are compatible with national research priorities

	Now	Future	Impact	Australian R&D	
Novel absorbent solvents	Low	Med	Emerging	Favourable	
Improved solvents	Med	Low	Key	Favourable	
Novel inorganic membrane materials/manufacturing	Med	Med	Emerging	Favourable-Strong	
Novel adsorbants (low temp. mesoporous adsorbants)	Low	Med	Emerging	Strong	
Novel adsorbants (high temperature applications)	Low	Med	Emerging	Tenable	
Chemical looping concepts	Med	Med	Emerging	Weak	
Low temperature/cryogenic CO ₂ separation	Med	Med	Key	Favourable-Strong	
Hydrate formation/separation	Med	Med	Emerging	Tenable?	
Improved / integrated flue gas/syngas treatment (pre-CO ₂ capture)	Low	Low	Base	Weak-Tenable	
Categorization of some themes in CO ₂ capture					

Relative Importance

Technology

Technology

Tenable? leak-Tenable

Relative position of

Growth Embryonic

Mature

Maturity

Growth

Mature

Embryonic

Embryonic

Embryonic

Embryonic

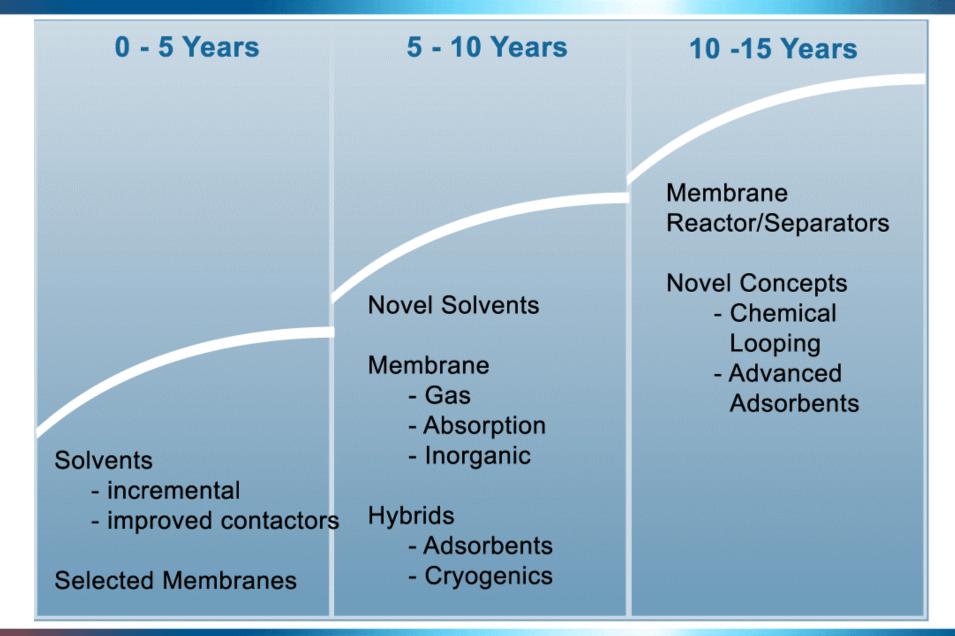
Solvent Absorption	1	✓	✓			
Membranes	1	1	✓	1		
Adsorption		✓	✓.	✓.		
Cryogenics	1		/	1		
Hydrates			✓			
Chemical Looping			1	1		
* Mana mantiaulaulu fan O aananatian thawah maasihla annliastian in mus aanahwatian						

Natural Gas

Technology

Post-Combustion Pre-Combustion

Categorization of technologies and their application to combustion and natural gas separation.


Oxyfuels

^{*} More particularly for O₂ separation though possible application in pre-combustion

Technology Area/Theme	Competitive Positioning			
Solvents	Favourable			
Membranes - polymeric and inorganic	Favourable/Strong			
Adsorbents	Favourable			
Cryogenics/Hydrates	Favourable/Strong			
Chemical Looping	Weak			

Relative positioning of Australian CO₂ capture R&D

Functional Step	Technology Theme	Technology	Impact Now	Impact Future	Technical Maturity	Expertise Location
Safely and Geomechanics effectively inject CO _Z		Formation damage Pore pressure; stress regime; rock strength; fault reactivation	Med. Med.	High High	Growth Growth	CO2CRC CO2CRC
	Injection process	Near well bore changes, hydrates	Med.	Low	Embryonic	CO2CRC / Internat.
Monitor and verify the stored CO ₂	Remote sensing	CO ₂ specific scanner for airborne use	Med.	High	Embryonic	CO2CRC
	Verification	Modern analogues including leaky systems	High	Low	Growth	CO2CRC
	Geophysical methods	Gravity	Med.	Low	Embryonic	CO2CRC / Internat.
		Vertical seismic profiling	Med.		Growth	CO2CRC /

Categorization of some technology themes relevant to CO₂ storage.

Transportation and conditioning of CO₂

- Pipeline technology
- Effects of contaminants
- Trucking, shipping and temporary storage technologies
- Issues relating to understanding the physical state of pipeline fluids
- Operational issues
- Environment, regulation and safety issues
- Compressor technology

Injection of CO₂

- Technologies for assessing, modelling and predicting geomechanical effects during CO₂ injection;
 - pore pressure prediction
 - stress regime analysis and modelling
 - rock strength measurement and prediction
 - fault reactivation modelling
- Technologies for assessing, modelling and predicting other near-well bore formation damage during injection
- Technologies for assessing, modelling and prediction of near well bore chemical changes, inc. hydrate formation

CO₂ storage options

CO₂ Storage Options

- 1 Use of CO₂ in enhanced coal bed methane recovery
- 2 Deep unmineable coal seam
- 3 Depleted oil & gas reservoirs
- 4 Large voids and cavities
- 5 Use of CO2 in enhanced oil recovery
- 6 Deep unused saline water-saturated reservoir rocks
- 7 Basalts as possible option

8 Reaction with brine

9 Formation of stable carbonate minerals

6

5

Produced oil or gas

Injected CO₂

Stored CO₂

Depleted gas reservoirs	Very high	Now - Low Future - High	High	High	2	
Deep coal seems	Medium - low	Medium?	Low	Medium	2-3	
Voids and cavities	High	Low	Low	Low	4	
Basalts	?	?	Low	Medium	3	
Serpentinites	Low	?	Low	Medium	4	
Enhanced oil recovery	Low	Low	Medium	Low	2	
Enhanced gas recovery	?	Low - medium	Low	Medium	2	
Enhanced coal bed methane	?	Medium	Low	Low	2	
Reaction with brines	High	Low?	Low?	High	3	
Use of carbonate minerals	High	Low	High	High	3	
Australia's position in technologies CO ₂ storage (Priority 1 - highest, priority 4 - lowest)						

Potential

Capacity

Very high

Low

Feasibility

Very high

High

Storage Option

Saline reservoir rocks

Depleted oil reservoirs

Expertise

Very high

High

Data Availability

High

High

Priority

1

2

CO₂ capture & storage technology application roadmap (Level 2)

- Pilot projects
- Demonstration projects
- Commercial projects

Pilot projects

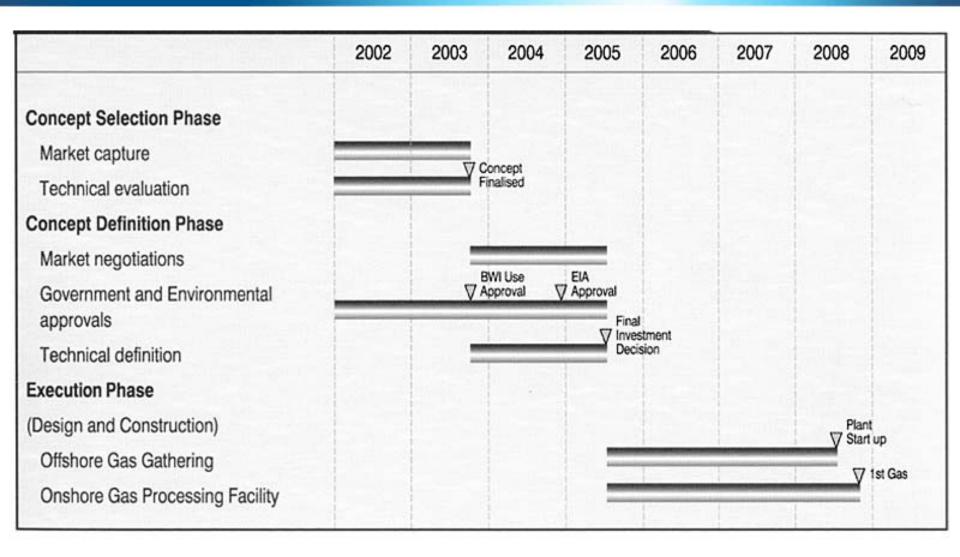
At a smaller scale (5 - 10,000 tonnes CO₂), pilot projects offer scope for addressing specific issues such as

- CO₂ injectivity
- validation of models
- testing of monitoring capability
- assessment of impact of CO₂ on the deep environment.

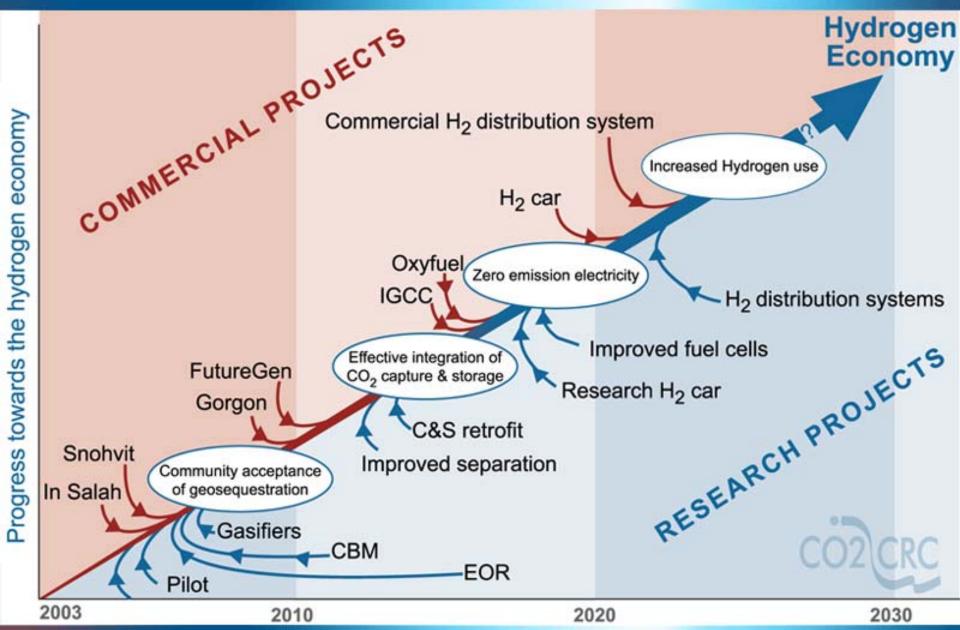
Additionally, pilot projects were seen as an important component in communicating geosequestration issues (especially storage) to the public.

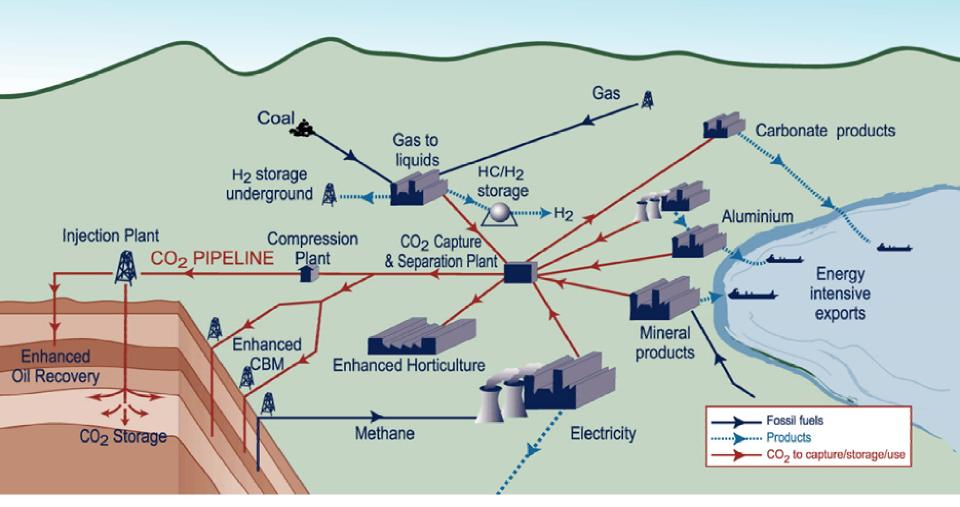
Demonstration projects

At a medium scale $(50 - 100,000 \text{ tonnes CO}_2)$ opportunities are being assessed for developing projects to demonstrate low emissions technology.


COAL 21 proposes for the construction of a black coal IGCC demonstration offering scope for CO₂ capture and storage as well as hydrogen generation to be commissioned around 2008.

Proposed commercial projects


Timetable for the proposed Gorgon Project


Technology roadmap (Level 2) showing pilot (5-10,000 tonnes), demonstration (50-100,000 tonnes) & commercial projects.

Level 3 technology roadmap for CCS showing likely progress towards the hydrogen economy

An emission free vision for the future.

SUMMARYThe Australian technology roadmap

<u>Level 0</u>, involved developing the national knowledge infrastructure and skill base in the four years prior to formulation of this roadmap

Level 1, which has a 5-10 year time scale provided detailed technology assessments and gap analyses for R&D related to:

- CO₂ capture, storage & use
- Technology strengths & weaknesses
- R&D priorities that will be pursued by Australia through
 - Australian R&D
 - International collaboration
 - Maintaining a watching brief

SUMMARYThe Australian technology roadmap

Level 2, with a 10-20 year timescale, provided broad scale assessments of potential demonstration and application opportunities through proposals for:

- Pilot (small scale) R&D projects
- Demonstration (medium scale) R&D projects
- Linking R&D with commercial (large scale) projects

<u>Level 3</u>, with a 20-30 year time scale, developed a roadmap for the hydrogen economy, stressing the key role of CO₂ capture and storage, in a hydrogen economy initially fossil-fuel-based.

CO2CRC acknowledges the support of the following organisations:

Australian Government

Geoscience Australia
Australian Greenhouse Office
Department of Industry, Tourism and Resources

Natural Resources and Environment

If you want to learn more about CO2CRC please contact:

Dr Peter J Cook CBE FTSE Chief Executive CO2CRC

Level 3, 24 Marcus Clarke Street

GPO Box 463

Canberra ACT 2601 AUSTRALIA

Phone: +61 2 6200 3366 Fax: +61 2 6230 0448

E-mail: pjcook@apcrc.com.au Web:

www.co2crc.com.au

