The experience of Lacq industrial CCS reference project

Carbon Sequestration Leadership Forum Lacq, France - March 17th 2010

Nicolas AIMARD – Total CCS R&D Program Manager and Lacq CCS Project Manager

Total Exploration & Production France

TOTAL

Τοται

Lacq Plant – General Flow diagram

An integrated carbon capture, transportation and geological storage in a depleted gas field project

Project schedule milestones

	2006	2007	2008	2009	2010	2011
Site screening and conceptual studies	,					
Basic engineering studies						
Detailed engineering and procurement						
Construction works						
Injection well work over						
Operational Phase and injection/storage				* 7		
Base line surveys and monitoring						
Information to stakeholders			Public in	q <mark>ui</mark> ry		
Permitting process with regulatory agend	cies			*		

Start up of operational phase : July 3rd, 2009

Official integrated project inauguration on Jan. 11th, 2010

Oxycombustion as part of a CCS integrated pilot

- Industrial scale 30MWth oxycombustion unit with gas
- Revamping of a conventional boiler
- CO₂ transport and injection for 2 years
- 120 kt CO₂ storage in a depleted reservoir
- First CO₂ injection for storage in France
- Public acceptance with consultation and dialogue
- Upscaling of oxyboilers for high steam/power generation

Principle of oxycombustion

AIR COMBUSTION

- Proiet Pilote CO₂ - Présentation du 03/06/08

Oxyburner and oxyboiler upscaling program set up

1 MWth Oxycombustion test rig

Objectives:

- Expand scientific knowledge on oxy-flames.
- Contribute to industrial oxyburner design
- Test Lacq 1MW prototype burner

Versatile and functional test rig

- Variable FGR rate and temperature
- Liquid / gas fuel feed capability
- Cold wall configuration
- Combustion monitoring

AIR LIQUIDE

Air Liquide Oxy-burner Principle

No external oxygen mixing:

- Intrinsic oxygen flames advantages: flame stability, turndown ratio, uneasy fuels.
- Improved operating safety: dedicated pure oxygen circuit all along distribution system.
- Additional flexibility to adjust FGR rate.

Capture facilities within Lacq existing utilities plant

Construction Phase at Lacq

Lacq CCS project - NA

TOTAL

Air Separation unit by cryogenic distillation

- 240 t/day of oxygen
- 95% to 99,5% oxygen purity
- Nitrogen for CO2 dehydration molecular sieves regeneration

Air Separation Unit for Lacq pilot

AIR LIQUIDE

Τοται

Industrial steam boiler in oxycombustion mode

Oxyburner implementation into Lacq CH2 boiler

Retrofitting of an air-fired boiler

- Oil & Gas boiler configuration
- Fixed geometry:
 - four horizontal burners
 - Chamber: L 5 m; W 4,5m; H 6-7m
- Careful sealing at every interface to minimize air in-leakage
- Fluid distribution control and measurement
- Operating mode
- Safe operation Safety analysis
- Tests and measurement plans

Openings for the four existing air-fired natural gas burners

Existing measurement port

Oxyburner implementation into Lacq CH2 boiler

"Oxyfiring" started on July 3rd, 2009

Wet scrubbing of high CO2 content flue gas

- Flue gas (~ 48% H₂O, 48% CO₂)
 @ 200°C and atm pressure
- Venturi scrubbing
- Wet scrubbing
 - Water condensed
 - flue gas outlet @ 50°C

CO2 compression, dehydration and export

Transportation and injection into a gas depleted reservoir

Facilities at Rousse well pad

CO₂ Monitoring plan

Injection phase

- Flowrate & composition of injected gas
- P and T borehole and reservoir pressure (optical fibre)
- Microseismic monitoring of reservoir and caprock
 - baseline before injection
- Gas migration at the surface :
 - soil gas survey (baseline before injection)
 - surface detectors on well pad

Environmental monitoring

- Underground aquifers and surface water
- Fauna and flora

Post injection phase

- P and T bottom hole and reservoir pressure
- Microseismic monitoring of reservoir and caprock
- Gas migration at the surface
- Environmental monitoring

Monitoring system installation during work over

OPERATIONAL SEQUENCE

RSE 1 Avant le work-over RSE 1 Complétion installée Casing 18 5/8 Casing 120m 18 5/8" DHSV 120m Casing 13 3/8" Casing 13 3/8" 1096m **RSE 1 Pendant le work-over** fibre Casing Casing 1096m optique 9 5/8" Tubing 5" 18 5/8" 120m Casing Top ciment - Tubing 3 1/2" 9 5/8" 2270m Casing 13 3/8 Top ciment 2270m 3465m 1096m Top ciment Casing 3465m 9 5/8" Jauges Casing 4412m 7" Top ciment P/T/sism Top ciment Divider 2270m Packer Top liner 4433m Casing Packer Réservoirs 7" 4539m 3465m Divider MANO Packer Liner 4544-4570m Top ciment Top liner 4433m 5" Réservoirs 4732m 4539m 4412m Casing MANO 7" Plug Top ciment4790m Liner 4544-4570m Divider 5" Packer Trou ouvert 4 1/8" Top liner 4433m -Réservoirs 4732m 4539m MEILLON MANO 5215m 4919-5145m Top ciment4790m -Liner 4544-4570m 5" Trou ouvert 4 1/8" 4732m Top ciment4790m -MEILLON 5215m 4919-5145m Trou ouvert 4 1/8" MEILLON 5215m 4919-5145m

TOTAL

CBL 7" 1967 Bottom cement log

USIT 2009 top cement

Bottom cement

TOTAL

Seismic data and wells available

Aquifers within the storage complex

Microseismic monitoring and RSE1 well work over

1 Pont d'Oly

Base Molasse : 330mGL

3 Moulin de l'Oasis

Base Molasse : 90mGL

Alt.: 180m

Alt.: 175m

6 Baratte

Base Molasse : 325mGL

5 La Bourdette

Alt.: 189m Base Molasse : 250mGL RSE1

Base Molasse : 250mGL

4 Borne Matheu Alt.: 347m Base Molasse : 250mGL 2 Capderou Alt.: 278m Base Molasse : 300mGL

A long process for a well known depleted gas field

2006: Early presentations of the concept **Jan – Oct 2007 :** Formal information to the french administration, mayors March 2007: Public meeting Rousse **Nov 2007** : press conference and launch of the dialogue phase Nov – dec 2007: 3 public meetings (Jurançon, Pau, Mourenx) **Apr – June 2008** : several meetings with small groups May 2008 : meeting with all mayors from Lacq to Rousse June – July 2008 : CLIS n°1 et 2 July 2008 : working meetings with Jurançon July – Sept 2008 : official public hearings Sept 2008 : CLIS n°3 **Dec 2008** : well pad open to the public – information letter to project neighbours Feb – March 2009: CLIS n°4, CLIS n°5 May 2009 : Official permit to capture, transport, inject and store 120'000 t of CO2 June 2009 : CLIS n°6 July 2009 : CO2 capture start up - first oxycombustion test July 2009 : One local NGO taking administrative actions against official permit **Sept. – Oct. 2009** : pre-injection baseline data and detailed monitoring procedures set up Jan. 8th 2010 : Fully operationnal CCS project

Project information also available on www.total.com/corporate-social-responsibility

LACQ CO2 CAPTURE AND GEOLOGICAL STORAGE PILOT PROJECT

TOTAL'S COMMITMENT TO STAKEHOLDER CONSULTATION

In order to ensure that the consultation process initiated by Total is useful to all concerned, and to guarantee a meaningful dialogue with all stakeholders, the Group undertakes to:

• Provide full, honest and clearly expressed information about the project (characteristics, impact, surveillance and monitoring system, etc.) so as to facilitate the sharing of knowledge and to foster open discussion with all stakeholders.

• Execute and report on the project with advice from a number of independent scientific and technical experts.

• Provide answers to all questions asked by stakeholders or members of the public.

• Publish minutes of all public discussion meetings as well as a summary of the consultation process, and take these into account in deciding final project details.

• Provide stakeholders and general public with regular updates of project progress and timetable.

PROJECT INFORMATION DOSSIER

Lacq Basin CO₂ Capture and Geological Storage Pilot Project

The reason for the Lacq Basin pilot project

There is no longer any doubt that the Earth's climate is changing, and in the opinion of the international scientific community this climate change is very probably due to human activities generating large amounts of greenhouse gases (GHG), especially carbon dioxide (CO₂). There are a number of ways we could curb global warming: consume lass energy, improve energy efficiency and use more non-fossil fuels. At the same time , technology for the capture and geological storage of CO₂ (CCS) now looks like a promising transition solution. This technology would allow us to diminish concentrated sources of CO₂ emissions generated by the combustion of fossil fuels. But before such technology can be implemented on an industrial scale, data must be obtained from pilot schemes such as the project at Lacq.

	es Services de L'Etat en P	yrénées-Atlantiques	Rechercher OK
PREFET DES PYRENEES-ATLANTIQUES		Accueil	Contact Votre Avis Plan du site
Actualités	⊒		Actions de l'Etat
Flash info	CO2 à Laca		Grippe A/H1N1
Communiques de presse			Les risques et vous
L'Etat recrute	Sommaire		Votre securite
Vos démarches	Projet de captage CO2 de Total	Projet Total_081127_CLIS	du territoire
	Projet Total_091110_CLIS	Projet Total_081031_Commission d'enquete	Elections
Particuliers	 Projet Total_090622_CLIS 	Projet Total_080929_CLIS	Cohésion sociale
Associations	 Arrêté préfectoral du 13 mai 2009 autorisant le pilote de stockage CO2 	 Projet Total_080718_CLIS Projet Total_080603_CLIS 	Santé et Protection des populations
Dublications	Projet Total_090330_CLIS		Agriculture et Pêche
Actes administratifs	 Projet Total_090209_CLIS 		Environnement et Développement durable Actualité
Textes officiels	Projet de captage CO2 de Total		CO2 à Lacq
Rapports d'activités des	Le groupement intergouvernemental d'experts sur l'évolu-	ution du	Profil environnemental
Enquêtes Publiques	climat (GIEC) travaille sur des solutions de réduction émissions de CO2 dans l'atmosphère, et notami	 Protection des sites et des espèces 	
Appels d'offres	captage et au stockage géologique du CO2.		 Protection de l'eau
Réglement Sanitaire	Total travail au développement de cette technique pour ses émissions industrielles. Le projet dans le bassin d	 Prévention des nuisance et des risques 	
Liens	s'inscrit dans cette perspective.		 Eco-responsabilité
Sites nationaux			 Déchets
Sites locaux	Calendrier :		Avis Autorité environnementale
	a 11 invite 2010 - Travenetics desired list		 Associations agréées de protection de

Project public information http://www.pyrenees-atlantiques.pref.gouv.fr/

(†

Leassons learned from early operations

Oxycombustion

- No major issue from revamping (but initial boiler status assessment critical)
- Several weeks of control system tuning
 - Presure control in the boiler
 - Flame stability
 - Change of load
 - Automatic switch from air to oxy
- Air and oxygen firing compatibility is essential
- After adjustments, very smooth operation for plant operators

Compression and drying

- NOx content in condensed water differs from design
- Liquid carry over in compression is more critical than classical gas compression

Transportation and injection

- No problem of pipeline start up
- No problem of injectivity
- Microseismic system downhole sensors sensitive to temperature
- Microseismic passive monitoring is a promising technique

Lacq CCS project - NA

39

An integrated carbon capture, transportation and geological storage in a depleted gas field project

