

Acceptance of CCS

Jason Anderson Senior policy analyst, IEEP

27 March 2007 CSLF workshop www.ieep.eu

Region	ANZ	NA	EUR	China	SA	Japan	India
1. Cost of Deployment	*						
2. Scale of Deployment	*						
3. Perceived Risks							
Dangerous levels of leakage for humans							
Impact on ecosystems							
CO2 Pipeline Safety							
Land use and related issues							
Capture process/chemicals issues							
Impact on drinking water							
Concerns about miner safety							
Effects of natural or induced seismicity							
CO2 Pipeline Routing							
Impacts on property values							
Mineral rights / landowner approvals							
4. Information / Communication							
Importance of broader energy context in shaping attitudes							
Access to information							
Information fit for purpose/useful to stakeholder group							
Are efforts to communicate adequate							
5. Policy Hurdles							
Ability of CCS to reduce emissions dramatically in short term	*	*					
Diversion of efforts from renewable energy		*					
Possible competition with nuclear		*					
Impact of EOR on extending oil market	*		*				
Impact of CCS on extending/expanding coal market							*
Full cycle impact of fossil fuel use							
Differential acceptability of different kinds of CCS							
CCS is not just a bridging technology	*	*					
Energy penalty							
6. Adequacy of Regulatory Frameworks to address risks							

European NGO priority concerns

- Diversion of effort from efficiency and renewable energy
- Impact on ecosystems (including long-term leakage and acute short-term impacts)
- Whether CCS is bridging or long-term
- Cost of deployment
- Dangerous levels of leakage for humans
- The differential acceptance of different types of CCS (in ocean disposal very unacceptable)
- The impact of CCS on expanding coal use (lifecycle impacts of coal in particular)
- The full cycle impact of continued fossil fuel use (lifecycle more broadly, including EOR)
- Scale of deployment (in the sense of physical infrastructure needed)
- CCS in the CDM: doubts about preparedness for 2008-2012

Conclusions

- Identifying CCS as just one part of the portfolio, and a 'bridging' solution, has implications:
 - Incentives will have to be structured in a way that adds action, rather than taking from other options (i.e. probably not a level playing field, but banded by technology)
 - Companies have to be seen to do their fair share (including paying for, if not actually managing, liability)
 - Action has to start now to avoid missing the boat
- Frameworks which guaranteed good site selection, risk assessment and site management must be developed and implemented
 - Note: demonstration projects should include storage demo's, not just capture facilities.
- Dialogue is better than 'managing' opinion; but actions speak louder than either one