

Early Assessment of Carbon Dioxide Capture and Storage Potential in China

8th Annual Conference on Carbon Capture & Sequestration 5 May 2009 – Pittsburgh, Pennsylvania

RT Dahowski, X Li, CL Davidson, N Wei, JJ Dooley, RH Gentile

Topics

- CO₂ Point Source Inventory
- Geologic CO₂ Storage Potential
- Cost Curves for Transport and Storage
- Sensitivity Analyses
- Summary & Next Steps

China Overview

- Rapidly expanding economy
- Driven largely by coal
- Emissions increasing
- Increasing pressure and determination for GHG mitigation
- Growing focus on environmental protection and sustainable development of China
- Primary goals:
 - Assess the potential for CCS technologies to deploy in China
 - Provide preliminary insight for decision-makers on the potential role of CCS technologies in China

Large CO₂ Point Sources in China

 Estimated Onshore Storage Capacity, MtCO₂:

DSF:	2,288,000
Gas:	4,280
Oil:	4,610
Coal:	11,970
TOTAL	~ ~ ~ ~ ~ ~ ~ ~

- TOTAL: 2,309,000
- Potential Offshore Storage Capacity: 780,000 MtCO₂

 Estimated Onshore Storage Capacity, MtCO₂:

Battelle

TOTAL:	2,309,000
Coal:	11,970
Oil:	4,610
Gas:	4,280
DSF:	2,288,000

 Potential Offshore Storage Capacity: 780,000 MtCO₂

 Estimated Onshore Storage Capacity, MtCO₂:

Battelle

DSF:	2,288,000
Gas:	4,280
Oil:	4,610
Coal:	11,970
τοται -	2 309 000

 Potential Offshore Storage Capacity: 780,000 MtCO₂

 Estimated Onshore Storage Capacity, MtCO₂:

DSF:	2,288,000
Gas:	4,280
Oil:	4,610
Coal:	11,970
τοται ·	2 309 000

 Potential Offshore Storage Capacity: 780,000 MtCO₂

 Estimated Onshore Storage Capacity,
MtCO₂:

Battelle

DSF:	2,288,000	
Gas:	4,280	
Oil:	4,610	
Coal:	11,970	
TOTAL:	2,309,000	
Potential Offshore		
Storage Capacity:		

780,000 MtCO₂

Battelle

CO₂ Sources & Storage Reservoirs

- 2300 GtCO₂ total potential onshore storage capacity
- 99% in deep saline formations
- 91% of large CO₂ point sources have a candidate storage formation within 100 miles (161 km)
 - 83% within 50 miles (80 km)
- Some sources in coastal regions do not appear to have many onshore storage options

Preliminary Cost Curve for CO₂ Transport & Storage in China

- CO₂ capture, dehydration, and compression cost intentionally excluded
- Each point on the curve represents a unique CO₂ source and its selected CO₂ storage reservoir.
- This curve represents the potential for annual storage at the specified costs assuming that all sources seek to begin storing their CO₂ at the same time and all capacity is available on day one, based on a 20-year commitment.

- Deep saline formations provide storage for over 90% of the individual source-reservoir pairs on this curve.
- Low-cost storage opportunities appear to be available in China but are likely exaggerated here due to a number of factors (e.g., timing of availability, smaller overall and individual capacities, lack of demonstrated performance)

Regional Cost Curves for CO₂ Transport & Storage in China

Regional cost curves highlight variations in CO₂ emissions distribution and accessibility and cost of CO₂ storage capacity East + North A Northeast • Northwest A South Central • Southwest \$80 \$60 \$40 Administrative Regions North Region lortheast Region \$20 Cost (\$/tonne CO₂) ast Region South Central Region Southwest Region \$0 Northwest Region -\$20 -\$40 -\$60 -\$80 -\$100

800

1,000

1,200

600 Cumulative Supplied CO₂ Capacity (Annual, MtCO₂)

400

200

0

Sanjiang Basin

Hailaer Basin

Erlian Basin

Songliao Basin

Bohai Bay Basin(Liaoning)

Basin-Specific Cost Curves

 Basin-specific cost curves help to identify highly demanded storage targets; as well as those where future growth could best be accommodated.

Jungger Basin

Tarím Basin

Turpan hami Basin

Sensitivity: Reduced Storage Capacity (50%)

Value of CCS in China

 China's Electricity Sector Use of Coal under WRE450 Constraint and Varying Storage Capacity Availability

Value of CCS in China – Cost Curve Results for 100%, 10%, 1% Storage

Sensitivity: Reduced Injection Rates (50%)

Base Values (tonnes/yr/well): Oil 21,000; coal 14,000; gas/DSF 100,000 - 1,000,000

Sensitivity: Increased Transport Costs (150%)

Reservoir Filling Impacts – Over Two 20 Year Periods

Battelle

Summary

- Over 1600 large CO_2 point sources \rightarrow 3890 MtCO₂/yr
- 2300 GtCO₂ theoretical storage capacity in onshore reservoirs
- There is strong potential for CCS technologies to offer significant emissions reductions in China, at transport and storage costs of up to about \$10/tCO₂
- Sensitivity analyses suggest that the storage capacity in China is robust and able to withstand significant reductions in ultimately accessible capacity and possible increases in component costs
- However, certain key regions may not have ready access to sufficient storage capacity in onshore basins – and may need to consider basins near offshore
- This work represents an initial step; follow-on research is critical to further understand the technical and economic potential and challenges for CCS to help reduce the carbon emissions from the growing Chinese economy