CSLF Projects Interaction and Review Team (PIRT CCS Technology Gaps Analysis ### PIRT FORMATION & OBJECTIVES Following the Technical group meeting in Melbourne, Australia, in September 2004, a recommendation was put forward for a working group which would assess projects proposed for recognition by the CSLF and review the CSLF project portfolio to identify synergies and gaps that would then act as input for any future revision of the CSLF Technology Road map. This working group was endorsed by the Policy Group at the CSFL meeting in New Delhi in April 2006 and is now known as the Projects Interaction and Review Team (PIRT). #### The PIRT has the following tasks: - Assess projects proposed for recognition by the CSLF in accordance with the project selection criteria approved by the Policy Group. Based on this assessment, make recommendations to the Technical Group on whether a project should be accepted for recognition by the CSLF. - Review the CSLF project portfolio and identify synergies, complementarities and gaps, providing feedback to the Technical Group and input for further revisions of the CSLF roadmap. - •Identify technology gaps where further RD&D would be required. - Foster enhanced international collaboration for CSLF projects, both within individual projects (e.g. expanding partnership to entities from other CSLF members) and between different projects addressing similar issues. - Promote awareness within the CSLF of new developments in CO₂ Capture and Storage by establishing and implementing a framework for periodically reporting to the Technical Group on the progress within CSLF projects and beyond. - Organize periodic activities to facilitate the fulfilment of the above functions and to give ar opportunity to individuals involved in CSLF recognized projects and other relevant individuals invited by the CSLF, to exchange experience and views on issues of common interest and provide feedback to the CSLF. - •Perform other such tasks that may be assigned to it by the CSLF Technical Group. ### **TECHNICAL GAPS ANALYSIS** In order to complete the task of identifying technology gaps where further research and development would be required, a comprehensive gap assessment began in 2006. The purpose of this was to identify where projects should be encouraged in the CSLF charter, to promote synergies and inform on new developments. Single well injection test- Alberta Enhanced Coal-bed Methane Recovery Project The CSLF Technical Group Gap Analysis work was divided into three components: 1) Capture, 2) Storage and 3) Monitoring and Verification. These were initially instigated by completion of three taskforces examining these topics: Task Force to Identify Gaps in C0₂ Capture and Transport, Task Force to Identify Gaps in Measurement, Monitoring and Verification in Storage and the Task Force to Review and Identify Standards for C0₂ Storage Capacity Measurement. From the results of these taskforces and by scoping out other gaps from within the Core Group and Floating Group within the PIRT, a list of technology barriers to the CCS deployment were identified and are listed in the adjacent table. These technology gaps were assembled at a high level so that more detailed gaps could be addressed underneath key topics. The 17 projects recognised within the CSLF were then asked to identify if any of their project outcomes would encompass these issues. Many projects were able to respond in time for this poster and the details of their responses are shown in light green. Those in dark green are taken from the projects descriptions on their websites and information sheets An interactive spreadsheet of these responses is available at http://www.cslforum.org/documents/PIRTGapAnalysis.xls The aim of this poster session is to highlight aspects of projects that currently or plan to fill these gaps, as well as promote discussion of the areas that are not being addressed by CSLF projects. If any non-CSLF projects wish to consider applying to be recognised as CSLF project, the submission forms are available at http://cslforum.org/documents/ProjectSubmissionForm.doc | | | | Alberta Erhan oed Coa Hoed Mathane Becovery Project | 2) CAMMET Energy Tochnology Centre
(CETC) RMD Oxylus I Combustion for
CO2 | 3) CASTOR | d) CO2 Capture Project | 5) C02G66Pe1 | 6) CO2 Separation from Pressur tred
Cas Stream | 7) CO2 SINK | 8) CO2STORE | Feasibility Study of Geological
Sequestration of CO2 in Base It
Formations (Dec can Trap) in India | 10). China Coalbe d Methane
Te din diogyiCO2 Se que stration Project | 11) ENCAP | 12) Frio Project | Geologic CO2 Storage Assurance at
in Selah, Algeria | (4) ITC CO2 Capture with Chemical Solvents | Regional Carbon Sequestration Partnerships | 16) Regional Opportunities for CC2
Capture and Storage in China | 17) IEA GHG Weybum-Midale CC2
Monitoring & Storage Project | |---|---|---|---|---|-----------|------------------------|--------------|---|-------------|-------------|--|---|-----------|------------------|---|--|---|--|---| | | CAPTURE
Post-Combustion | - | | Improved solvent systems | | | х | | | | | | | | | | | x | | | | | - | | Advanced capture systems Power plant concepts to Interpret CO2 capture. | | | x | x | | | | | | | | | | x | | | | | - | | Power plant concepts to
integrate CO2 capture
CO2 capture pilot plant
Pully integrated
demonstration plant | | | x | | | | | | | | | | | х | | | | | - | Pre-Combustion | | | | | | | | _ | _ | | | | | | x | | _ | | | - | | Hydrogen-rich turbines
Improved air separation
processes
Improved water-gas shift | | ? | | | | | | | | | x | | | | | | | | - | | Improved water-gas shift
Improved H2CO2 | | | | х | | | | | | | ^ | | | | | | | | - | | Improved HDCO2
separation
Power plant concepts to
Integrate CO2 capture | | x | | x | | | | | | | x | | | | | | H | | - | | Polygeneration
optimization
Pally integrated
demonstration plant | | - | | x | | | | | | | | | | | | | | | - | Oxytuel
Combustion | - | | Boiler design
Improved air separation
processes
Oxy-fael gas turbines | | ? | | х | | | | | | | x | | | | | | | | - | | processes
Ony-fael gas terbines | | ?
x | | | | | | | | | x | | | | | | | | - | | Combustion science
Power plant concepts to
integrate CO2 capture | | x | | | | | | | | H | x | | H | | | | H | | ~ | | CO2 capture pilot plant Fully integrated demonstration plant | | ? | | | | | | | | | х | | | | | | | | - | Industrial applications | Fully integrated
demonstration plant | | х | | | | | | | | | x | | | | | _ | | | - | | Capture from non-power
industrial processes | | | | х | | | | | | | | | | | | | | | Н | STORAGE
Injection | | | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | _ | _ | | | | - | | Optimum will spacings and
patterns
Optimum injection | X | | | X | | | | | | X | | | X | | | | x | | - | | Optimize aspection
parameters
Definition of variable rock
facies or rock property
types for injectivity. | х | | x | x | x | | x | | | x | | | x | | | | x | | - | | | х | | | x | | | | | | x | | | x | | | | x | | - | | Sustainability of high
injection rates
Formation water
compression / displacement
in closed or open system | | | | x | | | | | | | | | х | | | | x | | - | | Reservoir engineering aspects | х | | | | | | ? | | | х | | | х | | | | х | | | Storage Options | Salino Aquifore –
fluids/rock sularionships | | | x | x | x | | х | ? | | | | х | x | | | | | | | | Coal - rock properties | x | | ^ | | x | x | ^ | | | x | | ^ | Ĥ | | | | H | | - | | DOR – lassons to be
applied to other storage
asservoirs
Depleted oil and gas fields
visibility | | | | | x | | | | | | | | | | | | x | | - | | | | | х | | | | | | х | | | | х | | | | | | | | Ultra-low permeability
rocks (eg organic rich | | | | | | | | | * | | | | | | | | | | | | Basaks - proof of concept
Uhra-low permushility
rocks (eg organic rich
shales, non-conventional
assersairs) - proof of
concept | | | | | | | | | | x | | | | | | | | | _ | Trapping | Understanding physical or
chemical trapping
mechanisms
Migration rate | | | ? | x | x | | ? | x | х | | | | х | | | | x | | - | | mechanisms
Migration rate | | | | x | Ĥ | | x | _ | Ĥ | | | | x | | | | x | | | Hydrodynamics | Petroloum field | | | | | | | | | | | | | | | | | | | _ | CO ₂ properties | Petroleum field
development impact on
hydrodynamic regime | | | | | | | | | | | | | | | | | x | | - | | Bohaviour of COs under
different regimes of
pressure, temperature and
fluid mistures | | | | x | | | x | | ? | | | x | | | | | x | | | Assessments | - | | Storage Capacity
assessment methodologies
or
standards
Country wide or regional
assessments of storage
potential | | | | | | | | x | | | | | | | | x | x | | - | | Country wide or regional
associations of storage
potential | | | | | | | | x | | | | | | | x | x | х | | - | | amountment of storage
potential
Innovative methods for
amountment of goldogical
storage potential
Geological site
characteristation,
methodologies, schniques
and students
Potencols for evaluation of
potential sterilization of
saletine resources | | | ? | | | | | | | | | | | | x | x | x | | - | | Geological site
characterisation,
methodologies, techniques
and mendants | | | ? | | x | | | ? | | | | | | | | | x | | - | | Protocols for evaluation of
potential sterilisation of
existing resources | | | | | | | | | | | | | | | | | х | | _ | Leakage | | | | | | | | | | | | | | | | | | x | | - | | Plux rates of modern and
accions systems
Quantification and
modelling of potential
subsurface leakage impacts
Existing facilities and
recording | | | | x | | | | | | | | | | | | | Ĥ | | - | | subsurface leakage impacts
Existing facilities and
nunerals | | | | x | | | х | | | | | | | | | | | | - | Economics | Count of storage | | | x | | | | | | | | | | | | | X | | | _ | Software | Parameters for modelling | | | | | x | | | | ? | | | x | | | | | | | _ | | Parameters for modelling
fluid and rock interactions
improvements in software
for basin wide geological,
mercole engineering and | | | | | x | | | | Ĺ | | | A | | | | | | | | | nourvoir engineering and
hydrodynamic model
Integration in single | | | | | Ĥ | | | | | | | | | | | | | | - | | inservor engeleering and
hydrodynamic model
languation in single
software system of
goological, mearwole
engineering and
hydrodynamic aspects | x | | | x | | | | | | x | | | | | | | | | | Risk | Risk assessment models | | | ? | x | x | | ? | | x | | | | | | | | x | | | Public Outreach | | | | | ^ | ^ | | | | Ê | | | | | | X | | Å | | - | | Procedures and approaches
for communicating the
impacts of geological
storage to the general | | | x | x | x | | x | | | | | x | | | x | | | | | MONITORING | public | Well bore Integrity | functionality and province | | | | | | | | | | | | | | | | | | | - | | functionality and resolution
of available logging tools
Improved interpretation of | | | | x | | | | | | | | x | x | | | | x | | - | | Improved interpretation of
cased hole logs
Improved wellhore
monitoring nechniques
physical or chemical
changes to coment | | | | х | x | | ? | | | | | x | | | | | | | - | Identification of
faults and fractures | | | | | x | x | | ? | | | | | | | | | | x | | - | Journal Current | use of scientic | x | | | | x | | x | х | | | | | X | | | | x | | - | | use of seismic non-seismic geophysical techniques Improved recognition and interpretation of the nature of faults and fractures | x | | | x | x | | | | | | | | x | | | | x | | | Leaks in the
subsurface | | | | | Ĺ | Î | | | | | | | | Ĺ | | | | Ê | | - | | sosimic, resolution
seismic, cost reduction | | | | F | x | | x | | | F | | ? | x | F | | | x | | - | | evaluation of permanent or
semi-permanent sampling
points in an observation well | | | | | * | | | | | | | x | x | | | | | | | Surface and near-
surface leaks | points in an observation well | | | | | | | | | | | | | Ĥ | | | | | | - | THE RESE | detecting CO ₂ sueps into
subaqueous settings | x | | | | x | | | | | | | | x | | | | x | | - | | Personal sensions of CO2 flow | x | | | x | x | | | | | | | | X | | | | | | - | | use of vegetational changes
by hypothecital surveys
changes to identify gas
levels in the vadous zone
hupowed remote sensing to
identify sources of CO2 | | | | н. | x | | | | | | | | x | | | | | | | | identity souces of CO2 | | | | x | x | | | | | | | | x | | | | | | | Guideline
Development | determination of effective | | | | | | | | | | | | | x | | | | | | - | | determination of effective
pre-injection surveys
Improved integration of
monitoring techniques | х | | | | | | | | | x | | | x | | | | | | | | monitoring techniques
Educatly thresholds of
leakage that can be
measured | | | | | | | | | | | | | x | | | | | | - | | Beakerd | | | | | | | | | | | | | | | | | | ### TECHNOLOGY GAPS ANALYSIS RESULTS 1 | MONITORING | | | 1) Alberta Enhanced Coal-be | ed Methane Recovery Project | 4) CO ₂ Capture Project | | 5) CO ₃ Ge | o Net | 10) China Coalbed Methane Technology/CO ₂ Sequestration Project | | 13) Geologic CO, Storage Assurance at In Salah, Algeria | | 17) IEA GHG Weyburn-Midale CO2 Monitoring & Storage Project | | | |------------|---|---|---|--|--|---|---|---|--|---|---|---|---|--|---| | | | Will your project outcomes
encompass any of these
leaner? | Examples; | Project to expand on the specific ionor
they will address under the relevant pape
and document the levels at which ionor
are being examined | Reference to relevant week; Publication
or website | Project to expand on the specific iones
they will address under the relevant pap-
and document the levels at which iones
are being examined | Reference to relevant week; Publication
or website | Project to expand on the specific loans they will
address under the relevant gaps and document
the levels at which loans are being examined | Reference to referent work; Publication
or website | Project to expand on the spedific lonex
they will address under the relevant gaps
and document he levels at which lones
are being examined | Reference to relevant work; Publication
or website | Project to expand on the specific ionus
they will address under the relevant gaps
and document the levels at which issues
are holog examined | Reference to relevant work; Publication or website | Project to expand on the specific lonner
they will address under the relevant gaps
and document the levels at which lonner
are being examined | Reference to relevant work; Publication
or website | | | Well bore Integrity | | | | | | | | | | | In Salah is testing a portfolio of tools | | | | | Mt | | Functionality and assolution of
available logging node | Mentification of logging tools that have applicability to the monitoring of CO2 storage sites | | | Integrated 'Well Integrity Field Study' Includes assessment (well Study' Includes assessment (well condition), sampling 5 analysis, model building and history matching, forward simulation and engineering solutions. A completed study' Well-Sead in Stu Detection' tested the threshold detectability of CO2 using Schumbergers (IST tool in a pressurtant vessel. | Not public yet | | | | | и зави и матер в регото от гоом | | Limited work to this point, final phase will undertake more evaluation | menujis ca | | M2 | | Improved interpretation of cased hole logs | To determine potential activity outside the
casing or identification of problems with
cement bonding | | | See "Well Integrity Field Study"
above | Not public yet | | | | | | | as above | | | MS | | Improved wellbore monitoring
techniques | To allow interpretation of activity outside the casing, but in the immediate wellbore area | | | See "Well Integrity Field Study"
above | Not public yet | Variety of subsurface and above surface
monitoring techniques being tested in
terrestrial and aquatic settings | www.co/geonel.org | | | | | as above | | | M4 | | physical or chemical changes
to coment | | | | See "Well Integrity Field Study"
above | Not public yet | Wellbore materials integrity being assessed | www.co2georet.org | | | | | as above | | | | Identification of faults
and fractures | | | | | | | | | | | | | | | | MS | | Use of salemic | Regarding identification of open
fractures
that might be intersected by an expanding
CO ₂ plume | Geophysical program associated
with current multi-well project
(CSEMP) | | None | NA. | Natural analogues where CC2 migration is
occuring along fractures being selamically
appraised | www.co2pecret.org | | | In Salah plans to run several seismic options | | 2D and 3D seismic to identify faults.
Reprocessing of older seismic lines
to improve interpretation. | | | MS | | Non-seismic geophysical
nechniques | Improvements in resolution | tiltmeters deployed at surface and
below surface for current multi-seeli
project (CSEMP). | | The "ECBM Monitoring" study
models the utility of non-seismic and
sesimic applications to fault
identification in coal systems. | Not public yet | Ground penetrating radar being tested on
natural CO2 seepage systems | www.co2pecret.org | | | In Salah | | | | | M7 | | Improved recognition and
interpretation of the nature of
faults and fractures | With seismic, non-seismic or the combination of sechniques | | | See "ECBN" Monitoring" above | Not public yet | Integrated geophysical, petrographic and
geochemical techniques being developed | www.co/geonel.org | | | In Salah | | some attempts to use seismic and
High Resolution Aeromagnetics to
assess nature of faults in the region. | | | | Leaks in the
subsurface | | | | | | | | | | | | | | | | MS | | Sesimic, resolution | Improved vertical mediation Reduced core for survey and data | | | None | NA. | | www.co2cecret.cro | | | in Salah
In Salah | | Estimate of 2,500 tonnes of leakage
to an overlying formation as
detection limit. | | | MO | | Science, cost reduction
Evaluation of permanent or | interpolation | | | None | NA. | Lower cost seismic techniques being developed | NAME OF TAXABLE PARTY. | | | In Salah | | | | | M10 | Surface and near- | somi-permanent sampling
points in an observation well | To determine leakage into overlying zones | | | None | NA . | | | | | in Salah | | | | | | surface leaks | | | Considerate annihilate to be | | | | Considerable effect being made as extend | www.co2ororet.org | | | In Salah | | | | | Mes | | Directing CO ₂ sceps into
subaspectus settings | Improved methods, particularly dissolved
CO ₂ | Groundwater monitoring to be
undertaken as part of CSEMP multi-
well pilot | | None The 'Direct Detection of CO2 and | NA. | Considerable effort being made on natural
seeps into lacustrine and marine field labs. Laser techniques being tested on natural
CO2 leaks. | www.co/secret.org | | | In Salah | | Potable water and soil testing of CO2 and other gases. | | | M12 | | Remote sensing of CO2 flux | Developsechniques that can measure low
flux increases | Air surveys to be undertaken as part
of CSEMP multi-well pilot | | The "Direct Detection of CO2 and Methane" study has tested an aerial application over the RMOTC engineered lesk site. | Not public yet | | | | | | | | | | 1013 | | Use of vegetational changes
by hyperspectral surveys
changes to identify gas levels
in the vadose zone | Determine optimal times for surveys in
different climatic zones, a better
understanding of the influence of soil type | | | None | NA | Marine and terestrial floras being
investigated at natural CO2 seeps and
deliberate release labs. | www.co2pecret.org | | | In Salah | | | | | 1014 | | Improved remote sensing to identify sources of CO2 | To allow identification of increased CO ₂
fluxes at surface that might be from deeper
sources | | | See "Direct Detection of CO2 and
Methane" above | Not public yet | Airborne surveys over natural CO2 seeps | graw colligeonet org | | | In Salah | | | | | | Guideline
Development | | | | | | | | | | | | | | | | MIS | | Datemination of effective
pre-injection surveys | To provide guidance in the determination of
hydrodynamic isolation of the proposed
injection zone | | | None | NA. | | | | | In Salah | | | | | MARG | | Improved integration of monitoring techniques | Results of the application of these techniques | Project has allowed for comparative analysis related to reservoir simulators | Improvements in Coalbed Methane
and Technical Coalbed Methane
Reserved Stephalone, W.D. Goetter,
D.HS. Law and Matt. Marvor,
Proceedings of the 2005 International
Guilbed Methane Symposium,
Livitoristy of Alabama, Tuscalcosa,
Alabama, 20p (2005) | None | NA. | | | Project has allowed for comparative analysis related to reservoir alrestators | Improvements in Coalbed Methans
and Inhanced Coalbed Methans
Esservoir Simulatury. W.D. Gorder,
D.HS. Law and Matt Marce,
Proceedings of the 200 International
Coalbed Methans Symposium,
University of Alabama, Tuscaloosa,
Alabama, 20p (2005) | in Salah | | | | | 1017 | | Mentify thresholds of lankage
that can be measured | Implications of these on formulating regulation of short | | | None | NA | Seing assessed at natural CO2 leakage sites | | | | In Salah | | | | | | | | , | | | | | | | | | | | | | | | CAPTURE | | | s) C | ASTOR | 4) CO ₂ Cap | ture Project | 6) CO ₂ Separation from | r Pressurized Gas Stream | 11) E | NC AP | 14) ITC CO ₂ Capture with Chemical Solvents | | | |-----|-------------------------|---|---|--|---|--|--|--
--|--|---|--|---|--| | | CAPTURE | Will your project outcomes
encompass any of these
issues? | Examples; | Project to expand on the specific issues
they will address under the relevant gaps
and document the levels at which issues
are being examined | Reference to relevant work ; Publication or website | Project to expand on the specific issues
they will address under the relevant gaps
and document the levels at which issues
are being examined | Reference to relevant work; Publication or website | Project to expand on the specific issues
they will address under the relevant gaps
and document the levels at which issues
are being examined | Reference to relevant work; Publication or website | Project to expand on the specific issues
they will address under the relevant gaps
and document the levels at which issues
are being examined | Reference to relevant work; Publication or website | Project to expand on the specific issues
they will address under the relevant gaps
and document the levels at which issues
are being examined | Reference to relevant work; Publication or website | | | | Post-
Combustion | | | | | | | | | | | | | | | CI | | Improved solvent systems | Less energy-intensive, reduced
degradation, reduced corrosion, improved
operability, new solvent types | Less energy-intensive, reduced degrads Eco,
reduced corresion, improved operability,
new solvent types | www.CO2castor.com | | | | | N/A | | New solvents being developed - individual solvents and mixed solvents. Degradation studies. Corrosion studies, development of corrosion inhibitors. Viscosity. Predictability of properties. | умен соб-геневий са | | | CZ | | Advanced capture systems | Membranes, solid sorbents, physical
separation techniques, bio-minetic
approaches | Membrane contactors | | | | | | N/A | | Some membrane work - membranes as
confactors not separators. Work on
wettability of membranes. | Volume 45, no. 8 ISEC Research - special report on CO2 Capture. Http://pubs.acc.org/IDCR (American Chemical Society for Applied Chemistry and Chemical Engineering) | | | СЗ | | Power plant concepts to integrate CO2 capture | Process optimization, heat integration, capture readiness | Process optimization, Heat Integration | | Develop optimized integrated process
schemes for power generation with CO2
capture, including Exhaust Gas Recycle and
lean combustion. Process studies and lab-
lean combustion experiments | Sec: CO2 removal from Power Plant Flue
Gas - Cost Efficient Design and Integration
Study (Chol et al.) in Results from the CO2
Capture Project -Vol. 1 (ed. D. Thomas) -
Elsevier , 2005. | | | N/A | | Limited work on integration at this point although some underway with E.on | | | | C4 | | CO2 capture pilot plant | Demonstration and/or testing key
components or integrated systems on
a
scale of MWs to tens of MWs | Pilot plant at Esbjerg Power Station operated
by DONG Energy Hon CO2 / h - Launched in
Jan 06 | | | | | | N/A | | pilots at 1 tonne per day CO2 and 4 tonees
per day CO2 (500,000 actiday of fixe gas
from a lightle fixed electrical generating
station) - one quarter to one third megawatt
electricity equivalent | | | | CS | | Fully integrated
demonstration plant | Demonstration of long-term operational
availability, reliability, technical and
envisormental performance on a
commercial scale using relevant fuels
(e.g., coal) | | | | | | | N/A | | 4 trons per day plant capable of extended
running periods for degradation studies etc.
Used primatily for understanding heat rates,
process efficiency. | | | | CS | Pre-Combusco | Hydrogen-rich turbines | Develop, validate and demonstrate
optimisal-low emission hydrogen-rich
combastion technology for gas turbinos
including basis teols and data (CFD codes
and kinetics) | | | | | | | Implement new high pressure hydrogen
Minities in CPD codes, validate through
experimental seating of rethrence by
experimental seating of rethrence by
combustors. In parallel investigate the
hydrogen operational limit of
commercial low Not type combustors,
both by runnerical simulations and
through high pressure testing. Explore
design absorbing to achieve near 100%,
102 operation. | In general-more into can be found on
the ENCAP website at: girl For open
publications, as bellow list, they can
usually be downloaded from sites after
"googling" for the little or author: | | | | | C7 | | Improved air separation
processes | High temperature coranic membranes | | | | | | | Both high temperature caygen sorbents,
castartic OTM membarnes and ceramic
membranes for any gas production has
been investigated. The CARI process has
been focused and tested and a specific
plan has been made to conduct a more
comprehensive test programme and up-
scaling. | Conditional Cyclin with CQ, capture Censorie: 39-Ce-Co Childres with Righ El. Civilia Vashoulk Vashoulk | STRUC, "Gallestell NTNU, "Gallestell Structure," BDC 10. BC0av*, U. Clubb** Tu Dreader, "BDC 10. BC0av*, U. Clubb** Meet und Berster und Berster Meet und Berster Bers | Conference Journal Bit Accomments Meeting 19 BICCE 2009 200 | | | CS | | Improved water-gas shift | Improved catalysts | | | Develop improved water gas shift
technology incorporating hydrogen
permeable membranes or selective CO2
adsorberts to push nection to completion
and facilitate capture of CO2. Membrane and
adsorbert developments, lab leafing,
technologonomical evaluations. | See: GRACE - Development of supported
Paladium Alloy Membranes by Klete et al.
in Results from the CO2 Capture Project -
Vol. 1 (ed. D. Thomas) - Elsevier, 2005. Sec
Development of the Sospition Enhanced
Water Gas Shift Process - by Allam et al. In
Results from the CO2 Capture Project - Vol.
1 (ed. D. Thomas) Diserier, 2005. | | | NA | | Solom, F. Johnson Chalmers Led, B. Dhungel, H. Wünner, J. U. Staffgleif Solomboucht "AP-CA, "Nayel In- AT Technology, She | Fuel VDIFfammerdag Balle ASSET urbsexpir 2006 | | | СЭ | | Improved H2/CO2
separation | Improved solvents, membranes | | | Covering improved Pul-membranes for hydrogen separation and solids selectively disabilities of selective production of the selective production of the selective production of the selection t | See: GRACE - Overlagement of supported
Personal in Representation in Species and
Personal in Representation in Species and
National Personal - Elevent, 2005, See:
Vol. 1 (ed. D. Tomana) - Elevent, 2005, See:
Convisionment of the Startiston Element, 2005, See:
See: See: See: See: See: See: See | Development of CO3 primative file molecular gate membranes for CO3H2 asparation and its fest at an elevated pressure | See: S. Duen, T. Koukstein, S. Kzerne, K. Yamsda, Cewstopment of PAMAM dendriners. A Membrane Sci. 282 (2005) 2. Membrane Sci. 282 (2005) 2. Membrane Sci. 282 (2005) 2. Membrane Sci. All Membrane Sci. 282 (2005) 2. Membrane Sci. Sc | N/A | Meshansan for Hydrogen Conduction
under Clas Turbine Conditions CO2 capture using sherocal looping D. Pavor
conductors for our fudors application | e, T. Myhrosidd 20NTEP EPI
ie, M. Platfand, E. Lelidos PPP
elper, M. Olperdel, E. Andikovi, H. 22alied
20woldane, E. Piglior | PRIAMA Colomona
Control A Turn
Great 6, Turnbann
Great Turnbann | | | C10 | | Power plant concepts to integrate CO2 cupture | Combined shift and separation, bot gas
clean-up technology, process optimization,
heat integration | | | | Sec: Development of a hydrogen mixed
conducting membrane based CO2 capture
process by Yagland and Assen, In Results
from the CO2 Capture Project, YoL 1 (set. D.
Thomas, Listen, 2005, Sec. CO2 Capture
Publishment, 2005, Sec. CO2 Capture
Publishment, 2005, Sec. CO2 Capture
Asset CACHET*: A new project in EU FPC
(2006-2000) by Project presented at CRICT-
8, Trondhelm, 2006. | | | A complete process for integration in
the pre-combustion scheme is
researched and developed. This
includes the oxygen production and at
the steps necessary for realise pre-
combustion both for coel and natural
gas. Focus is on the commercial
and future applications. | | | | | | C11 | | Polygeneration optimization | Co-production of H2, methanol, ethanol,
synthetic faels, etc. in combination with
electricity | | | Develop integrated process schemes for co-
production of power and hydrogen (tael cell
quality) in the same frame described above
for power generation. | See: CO2 Capture and hydrogen production
from gaseous fuels "CACHET": A new
project in EU FP6 (2006-2000) by Foreigh -
presented at GRGT-9, Trondhelm, 2006. | | | NA | | | | | | C12 | | Fully integrated
demonstration plant | Demonstration of long-term operational
availability, reliability, technical and
environmental performance on a
commercial scale using relevant fuels
(e.g., cost) | | | | | | | No | | | | | | | Oxyfuel
Combustion | | | | | | | | | | | | | | | C13 | | Boiler design | Optimize, CFB-type units, PC without external recirculation | | | Develop Chemical Looping Combustion technology for natural or fuel gas boilers through solid carrier development and optimization, tab and bench CFB testing, hydrodynamic studies for optimization of internals. | See: Applicability limits of Fe, Cu and Ni
based oxygen carriers in Chemical Looping
Combustion by Madel et al., presented at
GMOT-4, Translatin, 2006. See: Chemical
Looping Combustion Technology Summary
by Harst and Miracca in Results from the
COZ Capture Project Vol. 1 (ed. D. Thomas)
Bisevier, 2005. | | | Research has been condusted on both CPB and PF type oxy-fuel coal firing for large scale greenfield plants. The systems presumes external recirculation. | | | | | | C14 | | Improved air separation
processes | Ceramic membranes, polymeric
membranes, others | | | | | | | Both high temperature oxygen sorbents,
carartic OTM membarnes and ceramic
membranes for syn gas production has
been investigated. The CARI process has
been focused and tested and a specific
plan has been made to conduct a more
comprehensive test programme and up-
scaling. | | | | | | C15 | | Oxy-fuel gas turbines | Develop, design and demonstrate
components, modules and engines | | | | | | | No - benchmarking of oxy-fuel CC has
been condusted with very favourable
results. | | | | | | C16 | | Combustion science | Investigation of combustion chemistry,
heat transfer and kinetics to improve
design, scale-up | | | | | | | Testing in both gaseous cry-fuel
burners and coal fired burners. Mapping
of heat release as function of axial
distance and emissions, simplified
models developed and test de against
commercial combustion codes. Ony-fuel
is not well represented in commercial
CFD codes. | | | | | | C17 | | Power plant concepts to
integrate CO2 capture | Process optimization, heat integration, integration of ASU with process | | | | | | | Conceptually for all kind of variations. | | | | | | C18 | | CO2 capture pilot plant | Demonstration and/or testing key
components or integrated systems on a
scale of MWs to tens of MWs | | | | | | | Planned to co-operate the phase II of
ENCAP with Vattenfalls Schwarze
Pumpe oxy-fuel pilot of 30 MWth. | | | | | | C19 | | Fully integrated
demonstration plant | Demonstration of long-term operational
availability, ediability, achinical and
environmental performance on a
commercial scale using relevant fuels
(e.g., coal) | | | | | | | Planned to co-operate the phase ill of
ENCAP with Vatendrait Schwarze
Pumpe cay-hour joint of 50 MWh. No atthough in Phase ill of ENCAP
valuable data with become avaibble
related to cry-hour cost PP plants
through the data equisition planned for
the Vatendrait pilot in Schwarze Pumpe
Plant. | | | | | | | Industrial applications | | | | | | | | | | | | | | | C20 | | Capture from non-power industrial processes | Steel, cement, refineries, etc. | | | Study application of CLC combustion to
refinery boilers. Study potential and critical
lesues for CO2 capture from FCC | | | | N/A | | | | | | | | | | | | regenerators through asylfring. | Poster 2 o | | ## TECHNOLOGY GAPS ANALYSIS RESULTS 2 | STORAGE | | 19 Alberta Enhanced Cas Sud Meditions Technoly Project | | 3) CASTON 6 CO, Cadan Proper | | nd 3) (5), { | | | 16) Criss Coded Millaw Tschesbyg/CD, Sequelaider Project | | Og fris Project | | 13 Geologic Cly, Shrapp Beautifes of In
Selfa, Reprin | | ing & Storage Project | | | |------------|------------------------------
---|--|---|--|--|---|--|--|--|--
--|--|---|--|--|--| | | STORA
GE
Injection | Will you project outcomes
encompare any of these turns? | Examples; | Project to expand on the specific issues they will
address under the relevant gaps and document the
levels of which issues are being examined. | Reference to relevant
work; Publication or
website | Project to expand on the specific issues they
will
address under the selected gaps and
document the levels at which issues are being
examined | Project to expand on the specific issues they will address under the relevant gaps and document the levels at which issues are being examined. | Reference to relevant
work; Publication or
website | Project to expand on the specific issues they
will oblives unless the internal gaps and
document the levels at which issues are being
examined. | Reference to selevant
work; Publication or
website | Project to expand on the specific inner they will
address under the relevant gaps and document the
levels at whick issues are being examined | Reference to relevant
work; Publication or
website | Project in capand on the specific issues they
will oblaves under the relevant pays and
document the levels at which issues are being
consisted | Reference to internat week; Publication or
website | Project to expand on the specific issues they will
address under the oriented gaps and document the
levels at which issues are being examined | Project to expand on the specific inner they will address under the relevant gaps and document the levels at which issues are being examined. | Reference to relevant
wark; Publication or
website | | 81 | 1,500 | Options well specings and pathons | Eg so as to municipies the across to donage copacity in a given reservoir, | Tee - optimum well specing consistened during inter-
plixt phase and in null-real plot ourselfly being
explained with Surcor (1956/F) | | | Individed in "Certification Framework" fingled hearmain
stimulation models. A genetic reservation model with
mange of neuron of innersistant and coparting parameters serviced to Gently injection
coparting parameters serviced to Gently injection
makes 1 configuration with world configuration
or inside personal potential condustration senses. An
additional study "ESTA" (generality" commisses science of
the same issues for cost fields. | Sof available yet | | | Nes - optimum well specing considered during micro-
plot phase | | | | In Salah has three thericontal/incetion hells whose
upusing is fixed. We are studying 002 movement, such
that subsequent projects can optimize well specing. | Aim to navinise oil production net CCC storage | sampho sp | | 22 | | Optimum injection purameters | E_{ξ} to evoid procured-tasked larger to, or to evoid procures stated forms. | This implification applications are made as they aspect of content multi-well plat (CSDP) parallel by Server | CQ, Borson and Enhance Mellians Production Field Selfano Production Field Selfano Science Solvens (Selfano Selfano Sel | | This sizes issue the cost beds See "Cestification financecid" shows | | | | Tee-optimum injection parameters is key sepect of
covered in all mind principles any operation area of ease.
More just not a suice of cooling in jurisdiged
optimize matters recovery trade. | ECRM More Pilot had in
the Astronomic Cosk for the
General Space, Other Field
Space Space Space Space
Space Space Space Space
Space Space Space Space
Space Space Space Space
(Figure Space Space Space Space
of Prospective Space Space
Space Space Space Space Space
Space Space Space
Space Space Space
Space Space Space Space
Space Space Space Space
Space Space Space Space
Space Space Space
Space Space Space Space
Space Space Space
Space Space Space Space
Space Space Space
Space Space Space
Space Space Space
S | Tali s neug dibinny i knap inde nye enso
galogia neda | Heroda, S. D., Drught, Chiefer, Benne, S. M.,
Famile G. H., Shard, Shield, Sayer, S. M., Shoda,
Y., K., & M. W. H., Duck, C., Sans, H. S., Bare,
J. Coll. School, S. Sayer, S. M., Shoo,
J. Coll. School, S. Sayer, S. Sayer,
J. Coll. School, S. Sayer, S. Sayer,
J. Coll. School, S. Sayer, S. Sayer,
J. Sayer, S. Sayer, S. Sayer,
J. Sayer, S. Sayer, S. Sayer,
J. Sayer, | Passeviri per tembling at its Balanius 10x0. Algotion pressure is manifored. | Visidos proceso dereses refe different culturas.
Presente montering la social mencon traduca.
Cgli sides refe specing for rapid section ye. | westers | | 53 | | Defiation of variable to it faces or
took properly types for injectivity. | Eg the need to compare the injectivity of fluid good
reservoir quality (mains deposted sendature) vessus
power thin bedded (Devial channel sendature)
reservoirs. | | (500) | | See "Certification Pronewook" above | for available yet | Being assessed in geological models
voolspackage | men religionation | | | This test used very parmeable racks (2 Darcy permeability) | | In positivition excellent illustration of injection into law
per washing I'll and paredistries, common in North
America, China and Europe. | Faces verbality built into design of injection processes.
Relatively lev perneability, shallow marine carbonates,
injectively has not beamen i soue. | International Conference
on Describous Clar
Control Technologies So
7, Spotender 2004 all
proceedings volumes. | | 84 | | Sustained By of high injection notes | To main'th the engight miss and strongs volumes at supposed as their break level of place must proposed superface possible to have been a proposed to the contract as entirely assessed as a strong assessment of the fact that proposed proposed in page 200 are proposed to the contract assessment for the fact that proposed proposed in page 200 are proposed to the contract assessment for the fact that the contract assessment as the contract assessment for the fact that the contract as the contract as a second of sec | Tes - especially during many plot phase | Alberts Hattheel Micro-
Plant Egithes for CSM
Proceeding, Shiharanai
Mattheen Recoverand
CSG, Bornane Federitis,
MJ, Mason KD, Genter
and JF, Robinson,
Proceedings of the STE
Annual Tropholal
Conference and Eshbern
Micro-
Self Paper (8005),
15 A, 23 –23 Esymbols
2004, SSE Paper (8005),
14g (2004) | | See "Cardination France-ofs" blove | Not available yet: | | | Tes-especially during minropility phase | Parameter Coulted Michael - Micro-Pilot Seat RE South Caretal - Parest, China, Seat Wong, Cord Lau-Rainfol Seag, Able Fibition - Souths, Seat Wong, Fibition - Souths, | | | | Summore syndromous, to set by see detend with signal to seek to seek to identify a packet yield. | | | 95 | | Franctice water compression (
displacement in closed or open
system | Eg imparts on potentially rempromising groundwater
in open system or possesse build-up in closed system. | | Economics of Enhanced | | See "Certification Framewook" above | Ret available yet | | | | | | | in Salah is injecting into a regional saline/armation In Salah will model CO2 newsment in the responsir | This is an EOR process, in other world there is a
pressure sink in the form of production walls. The
project does not seek to build pressure in the wells
beyond maintaining misobility pressure. | | | 2 | | Reservoir registering suspects | EgNes well loss formation desage, british franction, marsely perspection, effects of imposition in OC ₃ strains, ex | Phone In displace exchange defends CCC
Phone In the Commission of the CCC
phone In the CCC
countries growth and and excepted to make all manual
with potential COM units. | Economics of Enhanced Costeed Hebrarie TC EM Production using History TC D, Historian Edward Edwar | | Sone | sa. | | | Beeno's replaced to provide and a share of security of community co | | | | | The COC cones with HOS, but the reservoir is sheady
and thron largues on relatified. So evidence of
formation change at this point. | | | ŀ | Storage
Optimo | | Americal as being formed more an assumption | | | | | | Seing seneraed | men collected on | | | | Horoka, S. D., Dwyddy, Chiddine, Bencon, S. M.,
Feshol, B. M., Salousi, Shinkel, Daley, T. M., Khaska, | In Salah is injecting into a regional sell meformation. | | | | 97 | | Saline Aqual res - Statisticols,
relationalitys and interactions | Asymothia are bring forcessed upon, e.g.—secretic sed contactly, naturalized of conditionism, discontinuity, and discontinuity, and discontinuity, and discontinuity, and discontinuity, and and discontinuity, and and discontinuity, and analysis production, analysis production, understood of the trapping mechanism, and specific production at repostal scale, injection fore pell production, meneroral purposity helmogeneity, etc. | | | | Patisity addressed by "Certification Framework" | Set available yet | | | | | Tect of read-out astumation phrase thropping I, using
pulsar hauthorn wind real regions; justice size
methods including problement towers, more well
session and VEP. Sessipring and analysis of pre-
rigident followed risk, monthering fall of pre-
rigident followed risk, monthering fall of pre-
gional followed risk, monthering fall of pre-
gional problements of problements of the
fall of the common session of the
land of the common session of the
land of the common session of the
land of the land of the
land of the land of the
land of
land of
land
land of
land of
land
land of
land
land land of
land
land
land land
land land
land
l | Heroda, S. D., Deugle, Chedie, Berein, S. M.,
Freinit, G. M., Salaud, Shield, D., Say, T. M., Phage,
Y. H., Sebb, M. F., Dang, C. L., Samo, H. S., Blay, L.
Y., Sebb, M. F., Dang, C. L., Samo, H. S., Blay, L.
G. Chinagabi, saland formations: The Fine
and St. Chinagabi, Y. K., Dan, D. C., R., Sanday, S. D.,
Oland, M. D., Samo, Y. K., Dan, D. C., R., Sanday, S. D.,
Oland, M. D., Samo, Y. K., Dan, D. C., Sanday, S. D.,
Oland, M. D., Samo, H. S., Sanday, S. D.,
Oland, S. D., Sanday, S. D., Sanday, S. D.,
Oland, S. D., Sanday, S. D., Sanday, S. D.,
Oland, S. D., Sanday, S. Sanday, S.
D.,
Sanday, S. D., Sanday, S. D.,
Sanday, S. D., Sanday, S. D.,
Sanday, S. D., Sanday, S. D.,
Sanday, S. S., Sanday, S. D.,
Sanday, S. S., Sanday, S. S.,
Sanday, Sanday, Sand | | | | | 58 | | Coal - sork properties | Aspects that are being formered upon, eg-in justicity,
overlang, reparity, adverption, description, seeiing
getestad, manusculet enal and change in intereg-
perameters with depth, neignalizationspe of injected
ON ₂ to released markines, etc. | Analysis of nock properties is fundamental to this
project. Importes seated during score-plot and again
during current multi-well plot. | Secondary Forceits and
Fernandality of Cost vs.
Sea Composition and
Pressury, MJ, Maren and
W3, Gorde, SFE Reservoir
Evaluation and Engineering,
114 (25 (April 2005) | | ton | ss. | song salatao | www.milgocont.cg | Analysis of nock properties is fundamental to this project. Properties sealed during micro-print and again during current multi-well plot. | Secondary Preside and
Permedillity of Cost vs.
Gas Coreposition and
President, M.J. Marer and
W.D. Ounter, SPE Reservic
Evaluation and Employeeing.
114-125 (April, 2005) | | | | | | | 53 | | BOR.—bosons to be applied to other
strongs meanwhile | Aspects that we being forward upon, og CO ₂ erwey
classification, injection flave good production, strong
effectiveness, etc. | | | Feability study of ESE I long-term storage for
Caracterism celled (Playerd, Open) | Sone | sa. | Feing sates and | eren nell'agental org | | | | | | Payrojet desir Altri sweputificians and transport of 122 within the reservoir. It studies and marketing to the studies and marketing to the 122 within the reservoir and the studies of 122 widely specific reliable to the 122 within the reservoir. It is clearly such that the "or "CID thinks reservoir. It is clearly well as the "or "CID thinks reservoir. It is clearly well as the "or "CID thinks reservoir. It is clearly well as the "or "CID thinks the "or "CID thinks the "Oral thi | | | 990 | | Depleted oil and gas ficilis –
valuality | Assects that are being for used upon, og the ing of exalefully, implication for top and seed integrity due to production symmetries, capting use of enorting materials and for littles (semediation (desentions end), etc. | | | Performance assess sent for 2 displated grafields
(XCD, Abbach) and 1 displated cittled
(Castalfance) | Rose | SA. | | | | | | | In Salah is injecting into a depieting gas field | | | | 311 | | Beeds - proof of manept | Aspects that are being focused upon eg-
demonstration of injectivity, capacity methodology,
sub-based sedimentary busins, intra-based sediments,
seeiing properties, clemical martinus, set | | | | Kon | sa. | | | | | | | | | | | 912 | Tupping | Ultra low permedicity nois (sq
respect risk shales, non-
conventional reservoirs) – proof of
concept | Aspects that we bring forward upon eq - mix etirity, generalization impacts, adsorption properties, etc. | | | | koe | XX. | | | Tes - CBM formations typically have low permeability | | | | | | | | 913 | | Understanding physical or chemical
trapping mechanisms | Eg time thanses (Life to 10th years) and effectiveness
of the weakly of trapping percesses that commin
reservoirs, eg citentized, bocymers, residual pas,
absorption, mineral lostion, dissolution | | | | Partially addressed by "Cartification Framework" | Set uvalidés yet | Considerable effort being made | mm.cdpcod.cq | | | | | is Sales | Difference deterministic and probabilitatic at mulation of long-term strange (to tetal dissolution of 000). Prousseds of years, brinded-east sation of mineralization climited residents in several residents and control of the contro | | | 914 | | Magnation rate | Eg Quantifunium of naignation sets of CO ₂ and its impact on various tragging and statistical (hydrodynamic, dissolution) | | | | Patially addressed by "Certification Framework" | Not available yet | | | | | | | in Salah | Project not really designed for this jultinuigh
breakfirmagh was recorded as well as 5 ming of chemical
changes to water. | | | 915 | Hydrodyna
mis | | Eg. Pressure cherr chrun in depletingled) sil end gas
fielde – her sit effects suignation performers of injected
OO ₃ within the basis. | | | | None | 50. | | | | | | | | Not really relevant to this work. Extensive work on
hydrodynamic regime of the basin, Some concerns with
parable loss of CCCs as solvent to an underlying
apular, but this needed zone some losses with CCC
neignation out of the area for containment. | | | | CO ₂
propedies | | | | | | | | | | | | | | | | | | 816 | Accessome
stb: | regimes of pressure, traspendure and
fleed minimum | Eg dissolution trapping processes, artilit phase fluid
flow, etc | | | | Partially addressed by "Cartification Framework" | Not available yet | | | | | | | | BDR project on at it is to insintain the CDD at
superstition for initiable food. | | | 917 | | Strage Capacity assessment
methodologies or standards
Country wide or regional | Engouved methods to accurately assess potential
storage capacity of look or regional level. Egineed to have neglons "storage ready" point to | | | | Son. | N. | | | | | | | | Provides an assessment of the amount of COI that could be stored in the experior should manimisation of COI storage by the size. Set undertailer in this study, but finding could be used to extrapolate to many reprivate in | | | 515 | | assessments of strange potential Inspection methods for assessments of goological strongs potential | Eg need to have ne gins "intenge on ody" prior to
prover plant construction Eg improved methods Johandards to assess usess
values there is a practity of direct data, both in shallow
and deeper sections or where petroleum protected is | | | | Portally addressed by "Certification Framework" site assessment module | Not public yet | | | | | | | | to exhapsitate to many meanwhise in the region. Provides a good distribute that could be used in susceptive of other sees where distributed. This has not yet been undertaken. | | | 530 | | Geological site characterisation,
methodologies, techniques and
standards | Ermint suprander and standards will be a counted to | | | | Sone | sa. | Considerable effort being made | men collected on | | | Application of standard reservoir and hydrologic approaches to produce rigorous baseline | Herota, S. D., Noc. P. R., Haltz M. H., Yel, J. S.,
Freat, Nater, and Salous, Statest, 2001. <u>Sporeo</u>
the potential for large orders sequestration—
update on the Final horizon pilit project (skin.) in
District halls: Spored Securit Company. | | Ged og od characterisation is excellent, provides
guidance for other raudies. Use of detarets could be
undertaken belieg provide florastion on all situr-
geological settings. | | | 921 | | Protocols for evaluation of sotential | to adequately incurferee scale, best practice
married, at derive not parameters when there are no
physical complex—og population of most execut
techniques to predict assence quality. Eg impact on groundwater, petroleum production or | | | | See "Certification Framework" Rain Assessment | Sot available yet | | | | | characterization | From make, an owner, among our property and a colonial for large colonial and make the colonial and make the colonial and an article flow). In the principle of the first principle (and,), in Shanghout Several Annual Centerior on Carbon Several Annual Centerior on Carbon Several Annual Centerior (Several Annual Annu | | undertaken to help provide flormation on all mitar
geolgrad settings.
Ratting undertaken. | | | 822 | Leakage | Flux sets of modern and anxient | coal mining Eg manlogue studies both as seepage at surface and leakage within the subsurface negation system. | | | | | | Considerable effort being made | man religional cas | | | | | | | | | S22
S23 | | PATHOS | lekkap within the schurdless migration reptem. Eg what leakape is acceptable (in both volume and
tame) out of the primary-strongs formation relative to
timing and volume of gotential thail encape to the
atmosphere. | | | Lealings overarios modelling for the 4 sites | See "Certification Framework" Risk Assessment protocol | Sot available yet | | | | | Romeir above some trontod og ledningsser-land for Inscer and geschlestick drange in red swindstone above rigidation some. | Heroda, S. D., Saleni, Shelidi, Hasala, Y. K., Nasoci, K. S., Shelidi, Chattan, Beson, S. M., Farindi, G. M., Tauchi, C. Chelido, Tomor, and Ossy, T. M. (2001. Methodology Company in the Constitute issums assessed han the Nicolation on any continistics, in Proceedings of the 2000. USC Continent on the Foundation Parindian Chausil Adultud 10. | | Jebengtis understand possible nigration along aid veilbows. Fartial questionism. | | | 526 | Entons | Enisting facilities and materials | Eg Bake of leakage from abandoned wells ressed by
material and convert degradation. | | | this of leakage through well boxes and exprecis | blegrated "Nell Integrity Reld Study" includes
assessment (well condition), sampling it analysis,
model building and history matching, toward
annulation and engineering adult one. | Set available yet | | | | | | | | Sala sabore. | | | 525 | | Costs of stoneys | Eg imparts on costs of source sink matricing, lab
development, reservoir parameters, economies of
soile, "exact" well design, etc | | | | los | sa. | | | | | | | | Some-economic analysis on EOR potential. | | | 836 | Sethan | Parameter for acole ling fleid and
mix interactions | Eg improved algoritims specifically the OO ₂
behavious either physically or chemically, or long
time perceis required | | | | koe | M. | Considerable effort being made | ник оброндов | | | TOUGHE CCC code validation | Industries a permitted COD in hadron commons a
account media. C. Coughly and V.
Pracos.
Inthu Assau and govine graded and tender by uSECS/44
uScaughout visit (2004). | | lise of standard software. | | | 927 | | Ingovernate in soft was for basis,
wide prological, asserver
regimenting and hydrodynamic
model | | | | | Sone | sa. | Riderogeneity issues being addressed | men religionativa | | | | | | lise of standard software. | | | \$38 | | | Eq.— slow for single productive scatterer systems
rather than "bolling" together different systems and
results. | Project has allowed for comparative analysis related to reservoir analysis related to | Incommentario Coalbadi
Methode and Enhanced
Coalbad Welfared
Research Emilders,
W.S. Cowlet, D.H. G. Law-
and Marking, D.H. G. Law-
and Marking of the 2005
Manufolina Coalbed
Methode Symposium,
Enhanced Symposium,
Enhanced Symposium,
Enhanced Symposium,
Symposium, Rabama, 25p
(2005) | | The bits of the "Codification Financians" of to shawaith and place on a single pattern also accessed, resolved including and of the accessed. An additional project "Coopies Benchmissing. Generative Smith Smith and a Secretary of the access | Sci available yet | | | Project has allowed for comparative analysis related to
reservoir amalieties | Ingroveneris in Copied Medians and Enhanced Copied Medians and Enhanced Copied Medians Ensemble Copied Medians Ensemble Environment of the Environment of the Environment of the Environment of the Environment Copied Medians (Environment Copied Medians Tecnologica, Medians, 20) (2005) | | | | Standard software | | | 829 | | Park uses exect models | Eg Development, verification and quantification, and
grow with experience base | | | | Screeing Bills included in the "Cartification
Framework" | Not available yet | Considerable effort being made | man collected cas | | | | | | Extensive RAvers', including the development of a new-
probabilistic software COLESTRA. Experience can be
built on and defends used in other RAvers'. | | | \$30 | Public
Outseast | Promitiates and appropriates for
communicating the impacts of
goological strange to the greenal
public | Eg Education programs | | | | The CEPS GMY Broage Program coordinates with the CEPS Folicies 5 knowfules and Communications Programs to communicate during technical accurance issues for four crosses 1950 bit with in form. | for available yet | Considerable effort being made | ник обреситов | | | Rublic adhesh-though many media, including one-to-one, Survey of public opinion. | Public perception of carbon cloud decepture and
damps in Tercas, Fadeda Lise, Dissession to faul
Honour, School of geography, Oxford Eniversity, UK
2007 | In Salah is producing autreach scalarats | Yeyldia | | | L | | heper
hyperange in on Gauss | | | | | issues to focus groups (NEOs) who in turn communicate with the Rublo. | | | | | | | 200 Property and annual Co. | | | |