DYNAMIS

Towards Hydrogen Production with CO₂ Management

CSLF Meeting in Cape Town, South Africa 16th April 2008
Nils A. Røkke – Co-ordinator - SINTEF

Presented by Nick Otter Chair of CSLF PIRT

DYNAMIS

"Towards Hydrogen and Electricity Production with Carbon Dioxide Capture and Storage"

Identifying options for the future

- Co-funded by the European Commission (FP6)
- Contract no.: 019672
- Project duration:2006-2009 (36 months)
- Budget: 7,4 million €
- Co-ordinator: Nils A. Røkke, SINTEF Energy Research, Trondheim Norway

DYNAMIS Scheme

EU-DYNAMIS/HYPOGEN Overall Timeline & Budget

Phase 0 Feasibility Study by JRC (2004)

- Phase 2 Pilot Scale Demonstrations (2008-2010)
 290 M€
- Phase 3 Demonstration Plant Construction (2008 2012)
 800 M€
- Phase 4 Operation and validation (2012-2015)
 200 M€

Total ~1300 M€

Pic. Siemens

Pic. Vattenfall

Ill. Statoil

Consortium - 32 partners from 12 countries

Co-ordinator:

SINTEF Energy Research

Partners:

- ALSTOM (Schweiz) AG
- **ALSTOM Power Centrales**
- ALSTOM Power Environment ECS France
- **BP** International Ltd
- Bundesanstalt für Geowissenschaften und Rohstoffe
- # E.ON UK plc
- **Ecofys** b.v.
- ENDESA Generación S.A.
- III ENEL Produzione S.p.a.
- **III** Etudes et Productions Schlumberger
- European Commission DG JRC Institute for Energy
- Fraunhofer Institute for Systems and Innovation Research
- **Second State of Second Second**
- **IEA Greenhouse Gas R&D Programme**
- Institut Français du Pétrole
- **III** L'AIR LIQUIDE

- ** Natural Environment Research Council (British Geological Survey)
- Netherlands Organisation for applied Scientific Research (TNO)
- Morsk Hydro ASA
- Morwegian University of Science and Technology
- **# Progressive Energy Ltd**
- M Siemens Aktiengesellschaft
- **SINTEF**
- **SINTEF Energy Research**
- **SINTEF Petroleumsforskning AS**
- **55** Société Générale London Branch
- **Statoil**
- ## Store Norske Spitsbergen Kulkompani AS
- Technical University of Sofia
- Vattenfall AB
- Vattenfall Research and Development AB
- Shell Hydrogen BV

Overall Project Schedule

	Year 1	Year 2	Year 3
SP1: Project management and administration Lead project milestones	Project Launch	Mid-term review	Final workshop
SP2: Power plant & capture technology			Support to SP5
SP3: Product gas handling			Support to SP5
SP4:Storage of CO2			Support to SP5
SP5: Planning and pre-engineering of plants	Support/ limit	ited activity	
SP6: Societal anchorage of a HYPOGEN demo			

Selection Issues

- Geographic Aspects
 - Site specifics
 - Fuels availability
 - Power and heat sales
 - CO₂ conditioning and storage
 - Hydrogen demand
- Technical Aspects
 - Overall 90% CO₂ extraction, 400 MW_e and 0-50 MW H₂ export
 - Methane/Coal reforming/gasiifcation technology
 - Syngas Separation and Conditioning
 - GT's and train configuration(SIEMENS V94.2K, ALSTOM GT13E)
- Financial Aspects
 - CAPEX, OPEX
 - Financial risk: Technical, Financial (loans and interest, bankability), EIB role
- Political & Legal Aspects
 - Framework
 - Concensus and joint undertakings
 - Storage risk and acceptance

Critical Criterion - CO₂ Storage

Storing CO₂ - Matching with sinks

An initial data trawl of possible CO₂ storage locations showed EOR with at least 60mt CO₂ capacity is limited to North Sea while gas fields and aquifers are more widely spread

Storage Criteria List

- Depth > 800 m or P-init > 80 bar or Supercritical CO₂
- Total storage capacity > 60 Mt CO₂
- Injectivity > 2.0 Mt CO₂ per year or permeability > 200mD
- Integrity of seal in terms of thickness, faults etc.
- Location of site compared to Power/Hydrogen Market
- Geographical representation of sites
- Availability of geological data
- Availability of site by 2012
- Variety of geological conditions
- Variety of storage types

Power Plant and Capture Technologies – Cases Studied

6 NG cases 3 NG cases

GT26, Post-C, SMR, Pre-C – integration GT13E2, ASU, ATR, Pre-C – integration GT13E2, ATR, Pre-C - integration

6 Coal cases 3 Coal cases

Shell gasifier
Siemens/Future Energy gasifier
GE/Texaco gasifier
All cases: GT13E2, Selexol

x Lignite cases

3 Lignite cases

TBD – in progress – 3 cases initially HTW gasifier included, instead of GE/Texaco

Technology Selection

- Natural Gas with Pre-C capture
- Natural Gas with Post-C capture and NG reforming of H₂
- Coal and/or lignite with Pre-C (ZE)IGCC
- Coal/lignite with parallel H₂ production and CO₂ capture (oxy-fuel or Post-C) not pursued due to efficiency and thus cost issues

Site Decision Recommendations

Using the DYNAMIS requirements of cost efficient production of H₂, electricity and CO₂ storage, 4 sites are recommended for further studies in the second phase of DYNAMIS:

- Mongstad, Norway, suggested by Statoil: Natural gas based plant with offshore CO₂ storage.
- Hamburg region, Germany, suggested by Vattenfall; Bituminous coal based plant with onshore or offshore CO₂ storage
- East Midlands, England, suggested by E.ON UK; Bituminous coal based plant with offshore CO₂ storage
- North East UK, suggested by PEL; Bituminous coal based plant with offshore CO₂ storage

These plants represent a reasonable spread of fuel types, storage types and location and hydrogen utilisation/export possibilities.

Summary and Conclusions

- 4 sites have been identified as candidate plants for the HYPOGEN initiative - these have all been proposed by an industrial partner.
- A case like study of the process required to sites and technologies.
- Further work will involve to further develop these cases with preengineering studies and preparatory measures
- Target is to develop these cases ready for potential project launch: by the end of DYNAMIS in March 2009.
- Much is now dependent upon the industrial commitment and support of the specific sites potential candidates for EU ZEP Flagship CCS Demonstration Programme.

DYNAMIS

Towards Hydrogen Production with CO₂ Management

CSLF Meeting in Cape Town, South Africa 16th April 2008
Nils A. Røkke – Co-ordinator - SINTEF

