

Dynamis - Towards Hydrogen and Electricity Production with Carbon Dioxide Capture and Storage

Petter E. Røkke, SINTEF Energy Research SP-leader in Dynamis

Acknowledgments to Charles Eickhoff, Progressive Energy Ltd, SP5 leader

CSLF, Oslo, 2nd April 2009

Contract nr. 019672 FUNDED BY

Overview of Dynamis Presentation

- Structure and phases of Dynamis
- Technical component choices: Coal / Lignite / Gas
- Definitions of H₂ and CO₂ purity why important
- Case Studies commercial sponsors
 - Storage infrastructure and reservoir assessment
 - Hydrogen prospects
 - EIS issues
 - Efficiency gains Heat cycle integration and DH / industrial heat load
- Societal anchorage
 - Economics and Financing
 - Public Acceptance

Objectives

- ...prepare the ground for large-scale European facilities producing hydrogen and electricity from fossil fuels with CO₂ capture and permanent safe storage...
- ...the scope has been to investigate viable routes to large-scale cost-effective combined electricity and hydrogen production with integrated CO2 management.

Specifications for Dynamis

- Power output in the 400 MW class, including in coal cases a hydrogen-fuelled gas turbine
- Hydrogen production corresponding to up to 50 MW higher heating value, and the hydrogen produced fulfilling the specifications of an European hydrogen infrastructure
- 90 per cent CO2 capture rate and
- Significant capture cost reduction from a typical level of €50-60 / ton CO2 at project start 2006

The phases and structure of Dynamis

	Year 1	Year 2	Year 3
SP1: Project management and			
administration Lead project milestones	Project Launch	Mid-term review	Final workshop
SP2: Power plant & capture technology			Support to SP5
SP3: Product gas handling			Support to SP5
SP4:Storage of CO2			Support to SP5
SP5: Planning and pre-engineering of plants	Support/ limi	ited activity	
SP6: Societal anchorage of a HYPOGEN demo			

Contract nr. 019672 FUND

Technology Choices - Coal IGCC Process Evaluation of manufacturers/technologies Pre-combustion decarbonisation capture

CSLF, Oslo, 2nd April 2009

Technology Choices – Syngas Turbine

Choice is limited for hydrogen-rich syngas.

Initial technology choice was E-class GTs for provenness – information provided by project partners. Case Study sponsors opted for F-class higher efficiency

Machines used:

MHI701F4 GE9FA

Efficiency Improvement: IGCC with CO₂ Capture

Contract nr. 019672 FUNDED BY THE EUROPEAN UNION

Technology Choices - Gas

Process

- Post-combustion capture and parallel H₂ production most efficient
 - Driven largely by F-class turbine choice on NG

SIXTH FRAMEWORK P

Efficiency Improvements

- 3 basic lines of attack:
- Increase gross efficiency of individual components
 - use of F-class GT
 - careful application of gasifier
- Improve optimisation and hence overall cycle efficiency
 - attention to cycle detail and heat integration
 - use of high- and low-grade heat
- Reduce parasitic load levels
 - attention to ASU (15% of net power)
 - and CO₂ compression (7% of net power)

CO₂ and H₂ Quality Specifications

Specifications determined in order to :

- facilitate European standards in developing networks
- minimise unnecessary quality costs
- H₂ specification driven by PEM requirements:
 - low levels of cumulative poisons (eg CO, H₂S, NH₃)
 - realistic levels of inert contaminants (eg He, Ar, N₂, CO₂)
- CO₂ specification extended from ENCAP work and driven by:
 - corrosion and hydrate formation (H_2O)
 - safety (eg CO, H₂S CO₂), combustion / bacteria (O₂)
 - miscibility pressure (CH₄, N₂)

Specification published and adopted as preliminary standard

- Reports available at website http://www.dynamis-hypogen.com

Case Studies: outlines and locations

Contract nr. 019672

FUNDED BY THE EUROPEAN UNION SU

CSLF, Oslo, 2nd April 2009

Contract nr. 019672 FUNDE

Storage Assessment and Modelling

- Variety of sites assessed with detailed reservoir modelling
- Injection schemes devised to match plant (1.9 3.2 Mt/a)•
- EOR provides significant benefit and can justify longer transport ۲
- Key issues: overpressure / boundary conditions, geological risk

B10.

B9.

P10

P4

CSLF, Oslo, 2nd April 2009

Hydrogen Supply Prospects

Demand for bulk hydrogen is likely to develop slowly in the transport sector, but good interim industrial demand in key locations.

For the Case Studies:

Hydrogen Demand	Transport	Industry
East England	Low	Good
N.E. England	Moderate Tyneside	Good
Mongstad Norway	Low	Excellent
Hamburg	Moderate	Moderate

Contract nr. 019672 M

Specific EIS Issues

EIS topics peculiar to IGCC / CCS:

- Safety case for CO₂ in transport / storage
 - Onshore (proximity) and Offshore
- Impact of marine CO₂ leaks
- Additional water use
- Chemical solvents
- Syngas / CO₂ flaring
- Other impacts similar to regular power stations

CO₂ storage sub-sea issues being addressed (OSPAR, LC); Cross-border pipelines to be resolved

Plant Key Risks

Key remaining risks in CCS chain:

- High capital cost compared to alternatives
- Immaturity of total technology and lack of performance wraps
- CO₂ storage technical / geological risks
- Immaturity and volatility of ETS Carbon Price
- Novel CCS chain commercial arrangements

Economics and Financeability

Banks and Shareholders will only support with acceptable conditions Commercial "Gap" has to come from EC / MS on behalf of citizens

Credit Crunch - credit availability squeeze will heighten requirements Hence to be financeable, CCS projects need:

- availability guarantees, technology wraps
- contracted revenues including CO₂ (minimise cashflow risk)
- novel risks covered by government / sponsors / constructors

Case Study project financial process:

- costing along whole CCS chain,
- financial modelling against scenarios
- evaluation of viability against hurdle rate
- value of carbon price required (fixed floor)
- with and without support mechanism

Contract nr. 019672 FUNDED BY THE EUROPEAN UNIO

Professionals' view of acceptance of CCS

Example result from surveying GHGT8 participants 2007: Professionals are sceptical about public opinion on CCS

What is your personal opinion on carbon capture and storage? What do you think the public's opinion is?

Key issues:

- Lack of public information about CCS: outline and risks
- CCS as complementary bridging technology with renewables / nuclear

Consortium - 32 partners from 12 countries

-Co	-ord	linat	tor:
-----	------	-------	------

- SINTEF Energy Research
- -Partners:
- 🚺 ALSTOM (Schweiz) AG
- ALSTOM Power Centrales
- ALSTOM Power Environment ECS France
- 🏙 BP International Ltd
- M Bundesanstalt für Geowissenschaften und Rohstoffe
- 👬 E.ON UK plc
- 📫 Ecofys b.v.
- 🃫 ENDESA Generación S.A.
- III ENEL Produzione S.p.a.
- II Etudes et Productions Schlumberger
- 📫 European Commission DG JRC Institute for Energy
- Fraunhofer Institute for Systems and Innovation Research
- Geological survey of Denmark and Greenland
- IEA Greenhouse Gas R&D Programme
- Institut Français du Pétrole
- III L'AIR LIQUIDE

- –Natural Environment Research Council (British Geological Survey)
- —Netherlands Organisation for applied Scientific Research (TNO)
- 🙀 –Norsk Hydro ASA
- –Norwegian University of Science and Technology
- —Progressive Energy Ltd
- -SHELL Hydrogen B.V.
- 🛶 Siemens Aktiengesellschaft
- SINTEF
- –SINTEF Energy Research
- –SINTEF Petroleumsforskning AS
- –Société Générale London Branch
- 👥 –Statoil
- 👥 –Store Norske Spitsbergen Kulkompani AS
- —Technical University of Sofia
- –Vattenfall AB
- –Vattenfall Research and Development AB

Final product of Dynamis currently in progress:

A public brochure with main findings from Dynamis and recommendations on further use of the results.

Website: http://www.dynamis-hypogen.com

Thank you for your attention!

