

CSLF Technical Roadmap

Nick Otter

Chair

Projects Interaction and Review Team

(PIRT)

Current Position

- Nick Otter continues as PIRT chair, agreed with UK and Australia, with move to Australia as CEO of GCCSI
- Responsibility for 2008/09 revision of the 2004 TRM retained UK (and hence with Nick Otter with drafting support by GCCSI)
- Revised draft discussed in 12th March 2009 teleconference between UK and USA, France, Norway, Australia, Saudi Arabia – comments and revisions forwarded to GCCSI via the CSLF Secretariat

Process (continued)

- Intermediate draft sent out in week of 23th March to PIRT and Technical Group for discussion at Oslo – 31st March/1st April 2009
- Requirement of additional comments by 17th April 2009, for full draft by end of April 2009
- Final draft by mid-May 2009 for PIRT/TG sign-off
- Presented to Policy Group for review and endorsement, June 2009
- TRM to be tabled at Ministerial Meeting in October 2009

Key Changes - Summary

- Key technology needs in capture, transport and storage
- Substantial revision on storage technical details and gap analysis
- Updates and analysis of performance and costs of CCS options
- Review of global activities in CCS since the 2004 TRM
- Greater focus on other emitters such as industrial processes, oil and gas production – not just stationary electricity generation

Key Changes – Key Technology Needs

- Forward-looking milestones mapped (from 2009 to 2020+)
- Technical Road Map
 - Figure 17 in document
 - developed and crosschecked/correlated with CSLF/IEA/G8 milestones
- Suggested project areas address identified gaps – set out as boxed text

Key Changes – Revisions to Storage

- Substantial revision to storage technical details and gap analysis
- Geological storage in section 3 expanded to provide more details on geological storage types
 - deep saline formations, unmineable coal beds and depleted oil/gas reservoirs
- Diagrams updated to reflect greater range of storage options

Key Changes - Performance of CCS options

- Recent studies on performance and costs accessed
 - text and figures updated
- Notwithstanding regional factors, significant variations exist between sources
- Review team chose the most credil sources
 - but there is still a lot of work to be done in this area

Key Changes – Costs of CCS Options

- Updates and analysis of costs of CCS options
- Huge variations in estimated costs again, credible sources mined for ranges in costs
- Component costs for capture derived to produce indicative cost bars (at left) for NGCC, PC and IGCC
- Would have been useful to include other technology types but difficult to find work from reputable sources with findings that closely correlated with the prime sources used in the analysis

Performance and cost measures	N	NGCC p	lant	New PC plant				New IGCC plant				
	Range			Rep.	Range			Rep.	Range			Rep.
	Low		High	value	Low		High	value	Low		High	value
Emission rate without capture (kgCO/kWh)	0.344		0.379	0.367	0.736		0.811	0.762	0.682	٠	0.846	0.773
Emission rate with capture (kgCO,/kWh)	0.040	-	0.066	0.052	0.092	-	0.145	0.112	0.065	-	0.152	0.108
Percentage CO, reduction per kWh (%)	83	-	88	86	81	-	88	85	81	-	91	86
Plant efficiency with capture, LHV basis (%)	47		50	48	30		35	33	31		40	35
Capture energy requirement (% increase input/ kWh)	11	٠	22	16	24		40	31	14	٠	25	19
Total capital requirement without capture (USS/kW)	515		724	568	1161	. *	1486	1286	1169		1565	1326
Total capital requirement with capture (US\$/kW)	909		1261	998	1894		2578	2096	1414		2270	1825
Percent increase in capital cost with capture (%)	64		100	76	44		74	63	19	-	66	37
COE without capture (US\$/kWh)	0.031	-	0.050	0.037	0.043	-	0.052	0.046	0.041	-	0.061	0.047
COE with capture only (US\$/kWh)	0.043	-	0.072	0.054	0.062	-	0.086	0.073	0.054	-	0.079	0.062
Increase in COE with capture (US\$/kWh)	0.012		0.024	0.017	0.018		0.034	0.027	0.009		0.022	0.016
Percent increase in COE with capture (%)	37	-	69	46	42	-	66	57	20	-	55	33
Cost of net CO, captured (US\$/tCO,)	37		74	53	29		51	41	13		37	23
Capture cost confidence level (see Table 3.6)	moderate				moderate				moderate			

Updates Needed – Costs of CCS Options

Performance and cost measures	N	ew	NGCC pla	ant New PC 1			w PC pl	ant	New IGCC plant			
	Range		Rep.	Range		Rep.	Range		Rep.			
	Low		High	value	Low		High	value	Low	High	value	
Emission rate without capture (kgCO ₂ /kWh)	0.344	-	0.379	0.367	0.736	-	0.811	0.762	0.682	- 0.846	0.773	
Emission rate with capture (kgCO ₂ /kWh)	0.040	-	0.066	0.052	0.092	-	0.145	0.112	0.065	- 0.152	0.108	
Percentage CO ₂ reduction per kWh (%)	83	-	88	86	81	-	88	85	81	- 91	86	
Plant efficiency with capture, LHV basis (%)	47	-	50	48	30	-	35	33	31	- 40	35	
Capture energy requirement (% increase input/kWh)	11	-	22	16	24	-	40	31	14	- 25	19	
Total capital requirement without capture (US\$/kW)	515	-	724	568	1161	-	1486	1286	1169	- 1565	1326	
Total capital requirement with capture (US\$/kW)	909	-	1261	998	1894	-	2578	2096	1414	- 2270	1825	
Percent increase in capital cost with capture (%)	64	-	100	76	44	-	74	63	19	- 66	37	
COE without capture (US\$/kWh)	0.031	-	0.050	0.037	0.043	-	0.052	0.046	0.041	- 0.061	0.047	
COE with capture only (US\$/kWh)	0.043	-	0.072	0.054	0.062	-	0.086	0.073	0.054	- 0.079	0.062	
Increase in COE with capture (US\$/kWh)	0.012	-	0.024	0.017	0.018	-	0.034	0.027	0.009	- 0.022	0.016	
Percent increase in COE with capture (%)	37	-	69	46	42	-	66	57	20	- 55	33	
Cost of net CO ₂ captured (US\$/tCO ₂)	37	-	74	53	29	-	51	41	13	- 37	23	
Capture cost confidence level (see Table 3.6)			moderate	•		1	moderate	9	moderate			

- Costs and technical details for NGCC, PC and IGCC are based on 2005 IPCC report with data from 2002
- Good scope for updating these values, particularly as the IPCC data was assembled from various sources
- Drafting team is working with US contributors (and others) on getting more up-to-date information

Key Changes – Global Activities Since 2004

- The 2004 TRM showed project locations for (then) current and proposed projects
- Different emphasis for 2009 TRM maps revised to show increase in activity levels between 2004 and 2008
- Project lists consolidated, additional projects provided by PIRT members, url references attached to project to allow for "live" navigation

Key Changes – Other Large Emitters

- More inclusive references to other industries and processes
- The steel industry in particular is acknowledged because of global activities that are taking place
- The European based ULCOS (Ultra low CO₂
 Steelmaking) has CCS as an important component for the industry to move towards a low carbon future

Key Messages

- Key focus needs to be where true knowledge gaps exist rather than gaps due to inertia
- A need to harmonise with other bodies in this area IEA, GCCSI etc to achieve a common outcome
- Importance of integration CCS to be considered as a complete package not as a set of independent, discrete elements
- Integration/demonstration message has been expanded in the `suggested project areas` and the `Roadmap`table
- Compliance and consistency with IEA TRM for CCS and coordination action between IEA, CSLF and GCCSI

Acknowledgements

Contributions by

- CSLF members
 - Especially contributions and involvement from Australia, France, USA and UK

Co-ordination by

CSLF Secretariat

Supporting work by

Global CCS Institute