

Government of Western Australia Department of Mines, Industry Regulation and Safety

South West Hub Carbon Storage

Presented by Dominique Van Gent

Agenda

- Context for CCS
- ➤Australian Approach towards CCS
- CCS in the South West
 - SW Hub Storage Concept
 - Performance Factors
 - Project Development Processes : Workflows and Technical Assurance
 - Static Model
 - Dynamic Model
- ➢Uncertainties and Future Action
- ➤Summary

Australian Government Department of Industry, Innovation and Science

The project is supported through the Australian Commonwealth **Government CCS Flagship Program** through the Department of Industry, Innovation and Science (DOIIS); The West Australian State Government through the Department of Mines, Industry Regulation and Safety (DMIRS); The Australian National Low Emissions Coal R&D Program; and The local community in the south west of Western Australia.

October 2007

Climate Change is Still Topical

REPORT OF THE TASK GROUP ON EMISSIONS TRADI Lighting the way CLIMATE CHANGE MITIGATION OF CLIMATE CF Between a rock and a hard place the science of The Economics of Climate Change MATE CHANGE The Stern Review HE PHYSICAL SCIENCE B The Future of Coal NICHOLAS STERN Working Group I Contribution to the Four Report of the Intergovernmental Panel on C AN INTERDISCIPLINARY MIT STUDY CAMBRIDGE

Why Carbon Capture and Storage ?

- CCS is an important part of the lowest-cost greenhouse-gas mitigation portfolio. Without CCS, overall costs to halve emissions by 2050 rise by 70%
- CCS is more than a strategy for "clean coal". CCS is effective for all fossil fuel power sources (gas, coal & oil)
 - CCS technology must be adopted by biomass and gas power plants, in the fuel transformation and gas processing sectors, and in emissions-intensive sectors like cement, iron and steel, and chemicals manufacturing including Alumina
- The effect of building coal with Carbon Capture and Storage (CCS): the initial steps are more expensive than renewables, but the abatement cost curve crosses over around 45%, after which renewables becomes a more expensive way of decarbonising the system. Of all the options explored, CCS offers the potential to go the furthest, achieving 80% emissions reduction

2009 Carbon Mapping Task Force: High level Identification of Potential Storage Sites

CCS In Australia – Key Themes established in the early 2000's

- Key elements of Capture, Transportation and Storage need to be considered differently
 - Capture: Engineering Challenge Cost and energy penalty focused
 - Storage: Uncertainty Challenge Need to identify structures
 - Transportation: Experience in the USA and gas pipelines in Australia
- ➢Need for Legislation and Regulation
 - Oil and Gas Acts to be modified at Commonwealth and State Levels
- Community Confidence needs to be built
 - Best done through pilot projects in the country

Our focus is on storage!

2004-2008 CO2CRC – Otway Stage 1 Demonstration Project : Insight into Legislation

Gorgon regulatory arrangements

Storage : Learn from the Oil and Gas Industry Diversify Front End Risks

Find & Develop a combination of specific sub-surface conditions Studies, models, risk assessment and campaign <u>drilling</u>

SW Hub LOCATION : Near Industrial Centres

- In the heart of South West industry
- Agricultural and lifestyle area
- Project does not compete with potable water

Screening Studies : 1998 – 2007

S. Varma, T. Dance, J. Underschultz, R. P. Langford and K. Dodds

- APCRC Studies in 2000 identified potential areas in State
 - Collie Basin screened out
 - Southern Perth Basin identified as a possible area of interest
- CO2CRC study (2007) looked closer at this area for potential options :
 - Lightly explored: limited well and seismic data
 - Harvey Ridge "Lesueur" identified as a potential area of interest
 - 2,200 metre thick (800m to 3,000m+)
 - Wonnerup target injection Member over 1,500 m thick
 - Major aquifer "Yarragadee" absent

SW Hub Stratigraphy: Regional and in the Area of Interest (AOI)

Perth Basin

AOI

South West Hub Project Concept: Containment in a Thick Reservoir

WIF

Government of Western Australia | Department of Min CSIRO

13 ustry Regulation and Safety | www.dmirs.wa.gov.au

SW Hub : First Project aiming for Containment Without a Traditional Structural Seal.

Seeking CCS Solutions - Focus on Process and Good Practices

SW Hub: Project Approach consistent with CCS Development Workflows

DNV CO2QualStore

EU Directive 2009/31/EC and Australian Legislation have similar structures

New Data Acquisition with Extensive Community Consultation

2011 - 2D Seismic

2013 - 3D Seismic

2012 - Harvey-1 Well

2015 - Harvey 2, 3 & 4

wa.gov.au

es, Iné

Harvey and Waroona Shires

Governme

Extensive Core and Log Data/Analyses

Routine Core Analysis (RCA)

- Grain volume and grain density
- Porosity and Permeability
- Permeability to brine
- Threshold Pressure to Carbon Dioxide

Special Core Analysis (SCAL)

- Flow studies
- Mercury Injection Analysis
- Geomechanical Analysis

Run Well Services Gamma-Resistivity-Dipole Sonic 1 Harvey-2 2 Seismic VSP Gamma-Resistivity-Dipole Sonic-Neutron-Density 1 2 XRMI Image 1 Gamma-Resistivity-Dipole Sonic-Neutron-Density XRMI Image Harvey-4 2 **CSNG** Compensated Spectral Gamma MRIL Nuclear Magnetic Resonance 3 4 **RDT Reservoir Description Tool** 5 Seismic VSP Gamma-Resistivity-Sonic-Neutron-Density 1 2 Gamma-Resistivity-Sonic-Neutron-Density Harvey-3 Gamma-Resistivity-Sonic-Neutron-Density 1 2 **HSFT Formation Tester** 3 Seismic VSP

Exhaustive Data Processing to Improve Definition

SW Hub : Model Area

Peer Reviews for Technical Assurance

Date	Peer Assists/Reviews
2/12/2015	Introduction Meeting with Garnett and McKenna
17/12/2015	Workstation Review of seismic interpretation
25/02/2016	Review of Input Data and Static Model
28/04/2016	Injectivity modelling and upscaling
18/05/2016	Static Model Scenarios and Uncertainties
8/06/2016	Full Field modelling and Plume Movement
8/12/2017	Peer Assist: Review of Updated Interpretations
14/12/2017	Peer Review: Updated Interpretations
17/04/2018	Peer Assist: Static and Dynamic Modelling
23/04/2018	Peer Review: Static and Dynamic Modelling
14/06/2018	Peer Review: Modelling Outcomes and Data Options

Date	Researchers Review
3/12/2015	GeoMechanics, Geophysics, Image Log Interpretation, Static Model
13/01/2016	Static Model Update
2/03/2016	Static Model
29/04/2016	Injectivity modelling and upscaling
6/09/2017	Introduction Meeting with Researchers
14/09/2017	Technical Discussions with Researchers
18/04/2018	Static and Dynamic Modelling
12/06/2018	Present Model Outcomes to Researchers

Four Generations of Models

As more information became available, so did the level of sophistication and intensity of the models:

Generation 1 - >100 layers - 10 million cells Generation 2 - 357 layers - 30 million cells Generation 3 - >1,100 layers - 214 million cells Dynamic model - 1.1 million cells Generation 4 - current - 256 million cells Dynamic model - 1.96 million cells

With each iteration more data is acquired and uncertainties reduced

Decision Criteria and Impacts of Uncertainties

• Decision Criteria:

- Site can accept injection rates of 800,000 tonnes per annum of CO2 over 30 years and the plume will remain contained for 1000 years
- To be achieved through a **well count of 9 or** less.
- Modelling: Focus on Uncertainties
 - Extensive modelling of injection rates with varying parameters
 - Multiple scenarios defined to map plume profiles
 - Industry standard modelling tools used
 - Uncertainty impacts tested against Decision Criteria
- Results
 - Very encouraging defined rates can be achieved with 3 wells.
 - Injected volumes remain within storage complex

Black Oil and Compositional Modelling

- Dynamic modelling of the CO₂ sequestration process in the Harvey area was conducted in two ways:
 - "Black Oil" Modelling A simplified description of the physics of the fluids based on simple interpolation of PVT properties as a function of pressure.
 - Compositional modelling Using a "compositional" approach based on a thermodynamically-consistent model such as a cubic equation of state (EOS).
- Evaluations using Black Oil models can be done, in many instances, a few orders of magnitude faster than compositional models. In the Harvey area, most of the modelling is conducted using the "Black Oil" formulation. Specific cases are tested in a compositional model as a sense check.

Conceptual Development Plan and Injection Profile

- The conceptual plan envisages 3 gas injectors plans had 9 injectors.
- All injectors are completed at depths of almost

Government of Western Australia | Department of Mines, I

Reference Case – Black Oil Model

- CO₂ plume is compact and remains within the Area of Interest (AOI).
- The CO₂ stays within the Wonnerup.
- These results are consistent with the Phase 1 studies.
- The CO₂ plume stabilises about 600 years after the end of injection.

Reference Case - Comparison of Plume Shape and Movement Looking South

Reference Case - Comparison of Plume Outline (Top View) Black Oil and Compositional Model

CO₂ Material Balance (1000 Years After Shut-in)

(Reference Case - Compositional Model)

	Supercritical CO2			
	Trapped Gas	Mobile Free Gas	Total CO2 Dissolved	Total CO2
	(moles)	(moles)	(moles)	(moles)
Gas Material Balance	3.54E+11	2.37E+08	2.13E+11	5.68E+11
% of Injected	62.4%	0.0%	37.5%	100.0%

Modelling – Scenarios to test Uncertainty Impacts

Objective: To test under what conditions the success criteria can be breached

- Multiple Cases (Scenarios) Modelled
- Ranges of uncertainties considered
- Combination of uncertainties considered as "stress" cases.

Case	Case Name	Geological Model	Description		
Referen	ce 3Well	Reference	800,000 tpa. Brine salinity=45600 ppm (NaCl Equ Søt based on Land Correlation C=1	uivalent) 95	
1	3Well_NoPC	Reference	800,000 tpa. Brine salinity=45600 ppm (NaCl Equ No capillary pressures SgT based on Land Correlation C=1.	uivalent) 95	
2	3Well_highkrg	Reference	800,000 tpa. Brine salinity=45600 ppm (NaCl Equ Krg=0.25 SgT based on Land Correlation C=1.	uivalent) .95	
	Uncertaint	ties Modelled (Ex	amples)	alent)	
	 High mo 	bility Upwards	,	alent)	
	Poor tra	pping mechanisn	n	valent)	
	Low solution	ubility of gas in th	ie water	alent)	
	 Pessimis movem 	stic scenarios of g ent in the reservo	as 9ir	alent)	
	– Fau	ılt baffles.		alent)	
1	- Fra	ctures which prop	mote	alent)	
1	apv			alent)	
13	3Well_holey_wonnseal_lows	Cells adjacent to faults have the vertical permeabili increased by 10 times. Wonnerup and Yalgorup in communication through the faults.	ty 800,000 tpa. Brine salinity=200000 ppm (NaCl Ec SgT based on Land Correlation C=1.	quivalent)	N

Plume remains inside storage complex in all modelled cases

Only under few conditions the plume (< 2%) enters the secondary containment zone

Limited spread of plume compared to reference case: 6.5km X 3.5km

Government of Western Australia | Department of Mines, Industry Regulation and Safety | www.dmirs.wa.gov.au

Visualising the Key Uncertainties over time

Uncertainty Matrix

Range of Uncertainty

Qualitative ranking by colour code.

Relevance of the SW Hub

- Our modelling shows that it could be feasible to inject and store
 800,000 tpa of CO₂ over 30 years in the Lesueur formations in the Harvey area.
- Higher volumes can potentially be stored. 3 million tpa for 30 years have been modelled
- Main Remaining Gaps requires new well and test data
- If proven , absence of a traditional shale cover should not prematurely screen-out reservoirs for CO₂ storage
- SW Hub can widen the available sites for CCS consideration worldwide
- Located in the heart of the S-W industrial belt proximal to multiple emissions sources

Government of Western Australia | Department of Mines, Industry Regula

Stratigraphic Profile

Lesueur Sandstone Formation Southern Perth Basin

In the South West

- The Lesueur represents the best opportunity for CCS in the South West
- ➤The absence of the Yarragadee (potable water) is critical

CCS: Possibly the only mitigation option for some industries

Concluding Thoughts

- Numerous studies have shown CCS helps achieve lowest cost mitigation options as part of a portfolio.
- CCS has potential but often overlooked in the narrative
 - Need continued Government support as no business imperative
 - Need industry to voice support for the technology as they pursue decarbonisation.
 - > Need to develop a narrative for the community
- The only way to build confidence with the community is through demonstration
- In reality do we have a choice if we want to achieve 2DS? If not, why delay?

All data is publically available.

www.dmp.wa.gov.au/ccs

www.dmp.wa.gov.au/wapims

www.ngl.org.au

www.anlecrd.com.au