# MISSION INNOVATION Accelerating the Clean Energy Revolution

### **Carbon Capture Innovation Challenge**

Brian Allison, Carbon Capture Challenge Co-Lead UK Department for Business, Energy and Industrial Strategy





Department for Business, Energy & Industrial Strategy

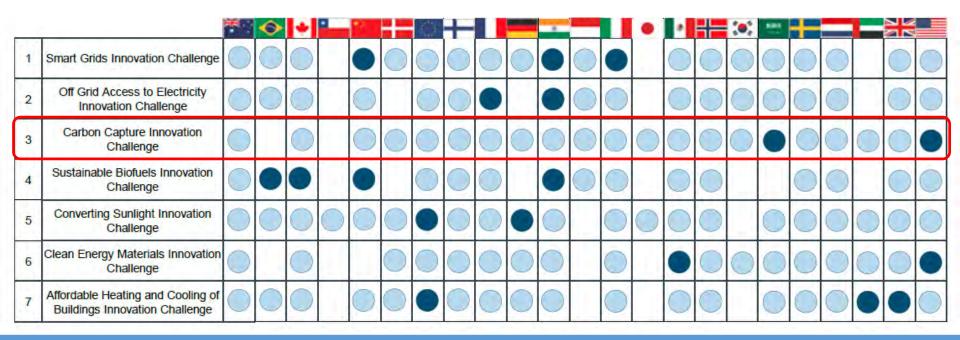
## **Mission Innovation**

- A Ministerial level initiative launched on November 30<sup>th</sup> 2015
- Mission Innovation's goal is to accelerate the pace of clean energy innovation to achieve performance breakthroughs and cost reductions to provide widely affordable and reliable clean energy solutions that will revolutionize energy systems throughout the world over the next two decades and beyond.



## **Mission Innovation**

- A Ministerial level initiative launched on November 30<sup>th</sup> 2015
- Mission Innovation's goal is to accelerate the pace of clean energy innovation to achieve performance breakthroughs and cost reductions to provide widely affordable and reliable clean energy solutions that will revolutionize energy systems throughout the world over the next two decades and beyond.
- MI seek to:
  - Double Governmental Investment in Clean Energy Innovation over 5 years (2016-2021), from \$15B to \$30B
  - Increase Private Sector Engagement in Clean Energy Innovation
  - Improve Information Sharing among MI countries


## **Innovation Challenges**

- Global Calls for Actions in High Priority Areas of Mutual Interest
- Opportunities for Collaboration Between Mission Innovation Members
- Encourage Increased Engagement by Global Research Community, Industry, and Investors
- Support Mission Innovation goals of reducing GHG emissions, increasing energy security and creating new opportunities for clean economic growth
- Outcomes May Inform, Guide and Support MI Country Investments in R&D

## **Innovation Challenges**

- Global Calls for Actions in High Priority Areas of Mutual Interest
- Opportunities for Collaboration Between Mission Innovation Members
- Encourage Increased Engagement by Global Research Community, Industry, and Investors
- Support Mission Innovation goals of reducing GHG emissions, increasing energy security and creating new opportunities for clean economic growth
- Outcomes May Inform, Guide and Support MI Country Investments in R&D

Note that the Co-Leads for this Challenges are UK, Mexico and Kingdom of Saudi Arabia



## **Carbon Capture Innovation Challenge**

- Co-Leads: Saudi Arabia, Mexico and United Kingdom
- 20 Mission Innovation participating countries
- Objective
  - Enable near-zero CO2 emissions from power plants and carbon intensive industries
- Work-Plan
  - Organize a CCUS Experts Workshop
  - Engage Stakeholder (WEF, IEA, Industry, ...)
  - Build Multilateral Collaboration Mechanisms

## CCUS Experts' Workshop

- Houston Sept 25-29 2017
- 257 Participants from Academy and Industry
- 22 Countries participated

tolecular catalysis of the electrochemi and photochemical reduction of CO<sub>2</sub>

• 13 Parallel Panel Discussions



## CCUS Experts' Workshop Structure

| Focus Areas                          |                                                           |                                                     |  |  |  |
|--------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|--|--|--|
| CO2 Capture - Panels                 | CO2 Utilization - Panels                                  | CO2 Storage - Panels                                |  |  |  |
| Solvents                             | Thermochemical Conversion<br>and Hydrogenation of CO2     | Injectivity & Capacity                              |  |  |  |
| Sorbents and Looping Systems         | Electrochemical and<br>Photochemical Conversion of<br>CO2 | Monitoring, Verification and<br>Performance Metrics |  |  |  |
| Membranes                            | CO2 Conversion to Solid<br>Carbonates                     | Forecasting and Managing<br>Induced Seismicity      |  |  |  |
| Combustion and Other<br>Technologies | Biological Conversion of CO2                              | Well Diagnostics                                    |  |  |  |
| Crosscuttings Topics (TEA, LCA,)     |                                                           |                                                     |  |  |  |

## **Panel Outcomes Structure**

#### Scientific challenges

• Brief overview of the underlying science challenge

#### Summary of priority research direction (PRD)

- What fundamental research is needed to address the challenge?
- Why can this research be done now? (e.g. are there recently developed capabilities?)

#### **Potential scientific impact**

- What impact will this research have on the CCUS scientific field?
- What impact will it have on the general scientific community?

#### **Potential impact on CCUS technology**

• How will this impact CCUS-relevant technologies?

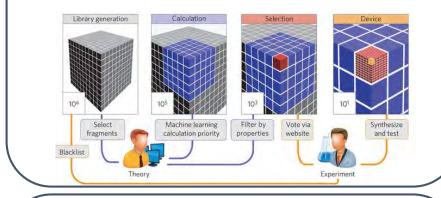
## CO2 Capture PRDs

| Solvents                                                                                                                                                  |                                                           |                                                                        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                           | Designing high performing solvents<br>for CO2 capture     | Creating environmentally friendly<br>solvent processes for CO2 capture |  |  |  |  |
|                                                                                                                                                           | pents M                                                   |                                                                        |  |  |  |  |
| Adsorbent Materials<br>Development Architecture<br>States Modeling Intersification<br>The CON Performance Estimation<br>Capture cost Analysis<br>estimate | Designing tailor-made sorbent<br>materials                | Integrating sorbent materials and processes                            |  |  |  |  |
| Reisentate Permeato                                                                                                                                       | Memb                                                      | Membranes                                                              |  |  |  |  |
|                                                                                                                                                           | Understanding transport<br>phenomena in membrane material | Designing membrane system architectures                                |  |  |  |  |
| Combustion and Other Technologies                                                                                                                         |                                                           |                                                                        |  |  |  |  |
| 40 Kgs                                                                                                                                                    | Catapulting combustion<br>into the future                 | Producing hydrogen from fossil fuels<br>with CO2 capture               |  |  |  |  |

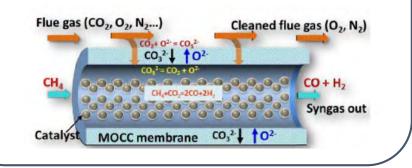
## **CO2 Utilization PRDs**

| •••                                                                                                                      | Thermochemical Conversion                                                                                               | n and Hydrogenation of CO2 CO, technology from Covestro<br>Foam components with up to 20% CO,                         |  |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| CO <sub>2</sub> + H <sub>2</sub> + N <sub>2</sub> H(CH <sub>2</sub> ) <sub>1</sub> H + H <sub>2</sub> O + N <sub>2</sub> | Valorizing CO2 by breakthrough<br>catalytic transformations into<br>fuels & chemicals                                   | Creating new routes to<br>carbon-based functional<br>materials from CO2                                               |  |
|                                                                                                                          | Electrochemical and Photochemical Conversion of CO2                                                                     |                                                                                                                       |  |
| Bertroventer<br>CHO,                                                                                                     | Designing and controlling<br>molecular-scale interactions for<br>electrochemical and<br>photochemical conversion of CO2 | Harnessing multiscale phenomena<br>for high-performance<br>electrochemical and photochemical<br>transformation of CO2 |  |
|                                                                                                                          | CO2 Conversion to Solid Carbonates                                                                                      |                                                                                                                       |  |
| Solid Carbonate<br>Brine<br>200 µm<br>Feedstock<br>Flue Gas                                                              | Accelerating carbon mineralization<br>by harnessing the complexity of<br>solid-liquid-gas interfaces                    | Tailoring material properties to<br>enable carbon storage in products                                                 |  |
|                                                                                                                          | Biological Conversion of CO2                                                                                            |                                                                                                                       |  |
|                                                                                                                          | Tailoring microbial and bio-<br>inspired approaches to CO2<br>conversion                                                | Hybridizing electrochemical and<br>biological processes for CO2<br>conversion to fuels, chemicals, and<br>nutrients   |  |
|                                                                                                                          |                                                                                                                         | hydrocarbon recovery with carbon storage                                                                              |  |

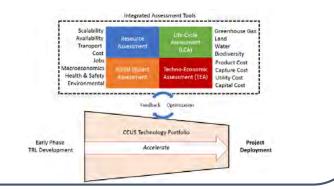
Designing complex interfaces for enhancing hydrocarbon recovery with carbon storage


## CO2 Storage PRDs

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Injectivity                                                                                    | & Capacity                                                                    |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Advancing multi-physics and<br>multi-scale fluid flow to<br>achieve gigatonne/year<br>capacity | Understanding dynamic pressure<br>limits for gigatonne-scale CO2<br>injection |                                          |
| Seilt argebal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring, Verification                                                                       | and Performance Metrics                                                       |                                          |
| Bine<br>Grain 35 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Optimizing injection of CO2 by                                                                 | Developing smart convergence                                                  |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | control of the near-well                                                                       | monitoring to demonstrate containment                                         |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | environment                                                                                    | and enable storage site closure                                               |                                          |
| erction 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Forecasting and Manag                                                                          | ing Induced Seismicity                                                        | E                                        |
| Real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | izing smart monitoring to assess                                                               | Improving characterization                                                    | a la |
| 1000 - Million - Million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | omalies and provide assurance                                                                  | of fault and fracture systems                                                 | 1 2 2 2 2 2                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well Dia                                                                                       | gnostics                                                                      | $\frown$                                 |
| Promise<br>promotive<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processo | Achieving next-generation                                                                      | Locating, evaluating, and remediating                                         |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | seismic risk forecasting                                                                       | existing and abandoned wells                                                  |                                          |


Establishing, demonstrating and forecasting well integrity

## **CCUS Crosscutting PRDs**

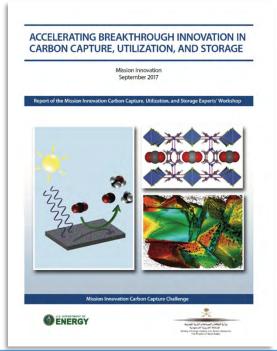

Integrating experiments, simulation, and machine learning across multiple length scales to guide materials discovery and process development in CCUS



Coupling basic science and engineering for intensified carbon capture, purification, transport, utilization and storage processes



Developing tools to integrate life-cycle technoeconomic, environmental and social considerations to guide technology portfolio optimization




#### Incorporating social aspects into decision-making

# <section-header><text>

## CCUS Experts' Workshop Outcomes

- Established current state of technology in CO2 Capture, CO2 Utilization, and CO2 Storage
- Created an international consensus on the most critical scientific challenges on CO2 Capture, CO2 Utilization, CO2 Storage, and Crosscutting CCUS topics
- Established internationally agreed Priority Research Directions (PRDs)
- Completed a report on CCUS Basic Research Needs
  - Intended to serve as a key resource for the international CCUS research community, governments, and the private sector, helping to inform national R&D policies and programs
  - The PRDs are not meant to be prescriptive and allinclusive. Rather, they are designed to inspire CCUS research community to elucidate the foundational scientific phenomena that underpin CCUS.



## **Next Steps**

- Report progressed at the Mission Innovation 3<sup>rd</sup> Ministerial (MI3)
  - May 2018, Malmo/Copenhagen, in conjunction with the 9<sup>th</sup> Clean Energy Ministerial
  - Co-hosted by the European Commission, Denmark, Finland, Norway, and Sweden
  - Carbon Capture Challenge is part of a public-private cooperation on clean energy innovation roundtables
    - Setup include 6 high-level government reps & 6 high-level private-sector actors, investors, international organizations, (BEC, IEA, WEF, ....)
  - Official launch of the CCUS experts' workshop report
  - <u>https://www.energy.gov/fe/articles/doe-releases-report-mission-innovation-ccus-experts-workshop</u>
- Develop an Action Plan
- Develop collaboration mechanisms (eg ACT)
- Foster engagement with industry and other multilateral CCUS initiatives
  - CSLF, IEAGHG, GCCSI, OGCI, ...

# MISSION INNOVATION Accelerating the Clean Energy Revolution

## **Thank You**

# Brian.Allison@BEIS.GOV.UK