International Overview of CCU Symposium: conclusions and recommendations

David Savary, Didier Bonijoly (Club CO₂ / France) CSLF Annual Meeting / Technical Group Meeting Melbourne, Australia October 17 2018

- 1. Actions of French CO₂ Utilization Working Group (Club CO₂)
- Lessons learnt from the "International Overview of CCU Symposium" (Paris, France, July 2nd 2018)
- 3. Final Conclusions of the Symposium

(i

1. Actions of Club CO₂'s French CO₂ Utilization Working Group

Stakeholders and Objectives:

- Working Group of Club CO₂
- 24 members: industries (Majors and SMEs), public bodies (national and regional-level), public research
- Started in 2013
- Objective:
 - Sharing on CO₂ utilization technologies and their potential
 - Aligning on key learnings
 - Mainstreaming recommendations on CO₂
 Valorisation for France

1. Actions of Club CO₂'s French CO₂ Utilization Working Group

11 actions completed or ongoing:

2 CO₂ Util^{on} Workshops (2015, 2016)

Mapping of French Stakeholders Brochure of labs activities

Task 9 – Video on CCU → On-going

Task 10 – Assessment of

2. Lesson learned from the International CCU Symposium

Facts & Figures

- Paris, July 2nd 2018; 150 attendees ; Symposium held before ISO TC/265 Paris' meeting
- Introduction:
 - European context and regulatory framework: Implications for research and innovation, EC-DG RTD
 - Potential global market of CCU, Global CO₂ Initiative
- 1 plenary session with a review per country of:
 - Policies in terms of GHG emissions reduction targets
 - Actors in CCUS
 - Key projects
 - Misc. Topics: international initiatives, questions,...
 - 11 countries: Australie, South Korea, China, India (not present but slide deck available), Germany, The Netherlands, Norway, France, UK, Mexico (webex), Canada
- Conclusions by IEA

2. Lesson learned from the International CCU Symposium

Facts & Figures

- Status of LCA guidelines for CCU:
 - EU-Methodology for quantifying GHG for fuels from CCU (JRC)
 - US-LCA Guidelines for CCU (NETL, webex)
 - International-LCA guidelines from CO2 Global Initiative (Aachen University)
- 1 Workshop session:
 - 4 teams working on LCA barriers for CO₂-to-fuels, chemicals, mineralization, bioconversion
 - 1 team working on standardization
- More : Zone poster of French CCU projects + Brochure of French labs working on CO₂ utilization
- 88% of attendees satisfied or very satisfied by the symposium

2. Lesson learned from the International CCU Symposium

Review of Countries (Examples)

Country	Key fact / project about CCU
France	VALORCO: CO ₂ conversion technologies with direct flue gases or CO ₂ captured from steel plant JUPITER1000: Demonstration of massive renewable energy storage into the transmission gas grid via production of gas via electrolysis of H ₂ O and an industrial source of CO ₂ CRYOCAP: cryogenic CO ₂ capture into a Steam Methane Reformer Several CCU projects at pilot scale with industrial symbiosis (eg: VASCO2,)
UK	CCUS Programme: 20M£ for Demo-scale projects, 15M£ for open call, 4.4 M£+6.5 M£ for ERANET Call 1 & 2
Mexico	In 2018, the Department of Energy launched the Mexican CCUS Centre. Among other projects: Carbon Capture Pilot Project (CCPP) on Poza Rica NGCC plant
	Among other projects. Carbon Capture Phot Project (CCPP) on Poza Rica NGCC plant

2. Lesson learned from the International CCU Symposium

Reco #1	Define application and local market before LCA to serve as a basis for the definition of the "Goal and Scope" (System boundaries, function, functional unit).
Reco #2	Use LCA at the beginning of the development of technologies to screen opportunities and
	provide solutions. It is not the final analysis to perform after technology development at TRL9.
Reco #3	Assess two different references (to be compared with the CCU-scenario):
	1. The current, most available process/technology,
	2. And an environmentally competitive solution even if it's currently not economically viable.
Reco #4	Make available more specific & reliable data: eg: CO ₂ captured, data of CO ₂ utilization processes,
	hydrogen,
Reco #5	Do not focus only on global warming potential when assessing impacts but take into account
	others (eg : land use, human toxivity, resource depletion, etc.) because transfer of impact may
	occur. This assessment will be communicated to scientific community.
	Specifically regarding CO_2 , there is a need to figure out : 1. The amount of CO_2 utilized into the process 2. The CO_2 avoided into the process 3. The GWP (considering upstream).

2. Lesson learned from the International CCU Symposium

Reco #6	Agree on an aggregation method of impacts or, at least, agree on methodologies of aggregation This assessment will be used for policy makers to make arbitrages between technologies.
Reco #7	Allocate impacts over the whole value chain from the emitter to the actor utilizing CO ₂ : there is a need to define economic value/penalty and environmental benefits/burdens, and to share these values.
	Make integrated assessments (economic and environmental) even for low-TRL technologies.
Reco #8	Define ISO technical prescriptions of processes, properties and performances of products.
Reco #9	Define ISO standard addressing goal and scope . Technical prescriptions and standards may help to create a label for CO ₂ -based products/services.

RAFT

3. Conclusions of the Symposium

- CCUS plays a key role in achieving global climate targets: 15% to achieve 2°C, 32% to be below 2°C.
- The amount of CO₂ utilised and geologically stored is limited compared to global anthropogenic CO₂ emissions.
- CO₂ utilization is a subject for many countries linked to climate policies ; most of them plan to support research and demonstration projects in order to encourage new technologies and to improve their performances
- Eg : EU involvments:
 - 1. Horizon H2020 (240 M€ EU contribution), Horizon Europe (35G€ for tackling climate change)
 - 2. Inputs of **SAM** (EC Scientific Advisory Mechanism) based on existing research on the climate mitigation potential of CCU technologies
 - 3. ERANET ACT CCUS : international initiative to facilitate innovation, coordinated by Norway
 - 4. Initiative Phoenix on CCU: main goal is to link national and European RD&I activities
 - 5. ECCSEL gathers world-class research infrastructure in Europe for developing CCS technologies.
 - 6. Mission Innovation

- No CO₂ utilisation options are available today that meet the 3 criteria proposed by IEA (emission reduction, economic viability, market)
- However, according to Global CO₂ Initiative, market insights are promising:
 - By 2030 potential to utilize over 6 billion metric tons of CO_2 per year / generate \$1US trillion/year.
 - Significant progress towards scalable technologies is needed.
 - Building materials, chemical intermediaries, fuels and polymers represent the biggest markets.
- CO₂ utilization addresses political and public acceptance drawbacks of CCS.
- Technologies of utilization and storage must be developed and deployed in parallel and not opposed.

Questions ? david.savary@solvay.com d.bonijoly@brgm.fr

